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Centralized Learning

Is it really a nice way to train a global model?
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Centralized Learning

Major Drawbacks

1. User data is centralized.
2. User data might contain private information.
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Centralized Learning

Is there a way to train a model without centralizing users’ data, i.e. ensuring
‘privacy by default’?
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Federated Learning

Goal
K number of users wish to train a state-of-the-art machine learning model,
collectively, without sharing their respective data Di, ∀i ∈ 1, . . . ,K ; to other
users.

Note: Assume the global accuracy to be Af .

In a practical federated learning setup, for δ ≥ 0,

|Af −Ac| = δ

Note: A ‘federation of users’ participate in the learning process, hence the
name federated learning.
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Federated Learning

Problem Formulation
1. K number of users participate in the learning process contributing to a
total of n number of data points.
2. Each user, k, has a set of data points S of size n(k) = |S|, i.e. n =∑K

k=1 n
(k).

3. In order to train a machine learning model, with parameters w, on the
labled data points (x,y) for each k, we consider a local objective function
of fk(w) = 1

n(k)

∑
i∈S l(xi, yi;w).

4. In a federated setting, we can write the objective function ff (w) in the
following form,

min
w

ff (w) =

K∑
k=1

pkf
k(w) = Ek[f

k(w)]

where pk = n(k)

n
, pk ≥ 0 &

∑
k pk = 1
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Centralized Learning

Figure: Centralized learning
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federated Learning

Figure: Federated learning
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Federated Averaging (Fed−Avg) Algorithm 1

Until Convergence:

Server:

1. Select K number of users randomly.
2. Send wt, i.e. parameter update at tth iteration, to all K users.
User:
1. Download parameter update wt from the server.
2. Run SGD locally, for E epochs, and obtain wk

t .
3. Upload wt − wk

t to the server.
3. wt+1 = wt+ weighted average of the parameter updates by K users.

1McMahan et al., ‘Communication-efficient Learning of Deep Networks from Decentralized Data’, AISTATS, 2017.
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Advantages

User level advantages:

1. Lesser communication with the server −→ Saves bandwidth & battery.
2. Lesser user data sent to the could.

Developer level advantage:

1. Localized data leading to new product opportunities.

Security:

1. More privacy preserving, assuming an honest but curious server.
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Key Criterion

1. With the increase in K , communication bottleneck becomes a challenge
for distributing model parameter updates
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Key Criterion

1. With the increase in K , communication bottleneck becomes a challenge
for distributing model parameter updates←− Communication-based
challenge
2. For a very large K , unreliability increase due to the chance of device
drop-out during each iteration←− Communication & hardware-based
challenge
3. With an increase in network size challenges like, fault tolerance,
straggler mitigation, arise←− Communication-based challenge

Communication capacity of each user is one of the most used user selection
criteria.
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How about statistical heterogeneity of users’ data?
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Key Criterion

How about statistical heterogeneity of users’ data?

1. With the increase in K , individual users generate data in a non-i.i.d.
manner −→ Most of the distributed optimization algorithms become im-
practical.
2. Understanding of the underline structure relating the data distributions
of various users have remains an open area of research

Is this convincing reason to investigate user selection based on statistical
heterogeneity?
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Weight Divergence on non-i.i.d Data 2

How is non-i.i.d defined in this problem setup?

2Zhao et al., ‘Federated learning with non-i.i.d data’, Pre-print. Available: https://arxiv.org/abs/1806.00582
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Weight Divergence on non-i.i.d Data 2

Setup:
Number of Users: K = 10.

Dataset: MNIST and CIFAR-10, each having 10 classes, i.e. C = 10.

i.i.d. Case: Uniform distribution over 10 classes are randomly assigned to
each user, i.e. k.

Non-i.i.d. Case:

1. Each user is assigned data partition from a single class←− Defined as
‘1-class non-IID’.

2. Data is sorted into 20 partitions and each user receives 2 partitions from 2

classes←− Defined as ‘2-class non-IID’.

Number of data-points: Amount of data n(k) for each client, resulting
n =

∑K
k=1 n

(k)

2Zhao et al., ‘Federated learning with non-i.i.d data’, Pre-print. Available: https://arxiv.org/abs/1806.00582
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Problem Formulation

1. C class classification problem defined over a compact space X and label
space Y . So, Y = [C], where [C] = {1, 2, . . . , C}.

2. f : X −→ S, where probability simplex
S =

{
z|
∑C

i=1 zi = 1, zi ≥ 0, ∀i ∈ [C]
}
. f is parameterized over w, i.e.

weights of the neural network.
3. Population loss with cross-entropy loss is defined as,

ℓ(w) = Ex,y∼p

[
C∑

i=1

1y=i log fi(x,w)

]
=

C∑
i=1

p(y = i)Ex|y=i [log fi(x,w)]

4. The learning problem (ignoring the generalization error for simplicity) by
directly optimizing the population loss,

min
w

C∑
i=1

p(y = i)Ex|y=i [log fi(x,w)]
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Problem Formulation (Continued)

How to find w?
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Problem Formulation (Continued)

How to find w?

The optimization is iteratively solved using SGD.
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Problem Formulation (Continued)

Centralized learning:

Parameter w after tth update, denoted as w(c)
t , obtained as:

w
(c)
t = w

(c)
t−1−η∇wℓ

(
w

(c)
t−1

)
= w

(c)
t−1−η

C∑
i=1

p(y = i)∇wEx|y=i

[
log fi

(
x,w

(c)
t−1

)]
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Centralized learning:

Parameter w after tth update, denoted as w(c)
t , obtained as:

w
(c)
t = w

(c)
t−1−η∇wℓ

(
w

(c)
t−1

)
= w

(c)
t−1−η

C∑
i=1

p(y = i)∇wEx|y=i

[
log fi

(
x,w

(c)
t−1

)]
Federated learning:

Each user k ∈ [K] performs SGD locally to obtain w
(k)
t as:

w
(k)
t = w

(k)
t−1 − η

C∑
i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,w

(k)
t−1

)]
Considering the synchronization is performed at each T th step, m− th

such synchronization in the server produces the following update:

w
(f)
mT =

K∑
k=1

n(k)∑K
k=1 n

(k)
w

(k)
mT
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Weight Divergence

Theorem: Given each user k ∈ [K] with n(k) i.i.d samples following
distribution p(k). If ∇wEx|y=i log fi(x,w) is λx|y=i-Lipschitz for each class
i ∈ [C] and synchronization is performed at each each T step, the weight
divergence after mth synchronization follows the inequality shown below,

∥∥∥∥w(f)
mT

− w
(c)
mT

∥∥∥∥ ≤
K∑

k=1

n(k)∑K
k=1

n(k)

(
a
(k)

)T ∥∥∥∥w(f)
(m−1)T

− w
(c)
(m−1)T

∥∥∥∥
+ η

K∑
k=1

n(k)∑K
k=1

n(k)

C∑
i=1

∥∥∥∥p(k)
(y = i) − p(y = i)

∥∥∥∥T−1∑
j=0

(
a
(k)

)j
gmax

(
w

(c)
mT−1−k

)

where gmax(w) = maxCi=1

∥∥∥∇wEx|y=i log fi(x,w)
∥∥∥ and a(k) = 1 + η

∑C
i=1 p(k)(y = i)λx|y=i.
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Weight Divergence

Key Takeaways:

1. What are the main causes of divergence?
=⇒ Weight divergence caused by the (m− 1)th update, i.e.∥∥∥w(f)

(m−1)T −w
(c)

(m−1)T

∥∥∥.
=⇒ Distance between the data distribution on user k and the actual
distribution for the whole population, i.e.

∑C
i=1

∥∥∥p(k)(y = i)− p(y = i)
∥∥∥.

=⇒ Divergence can be treated a proxy 3 to the accuracy, i.e. higher the
divergence lower the accuracy.

3Although no theoretical analysis exists.
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Weight Divergence

Figure: Comparison of weight divergence between i.i.d. and non-i.i.d. setup 3

3Zhao et al., ‘Federated learning with non-i.i.d data’, Pre-print. Available: https://arxiv.org/abs/1806.00582
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Weight Divergence

How to mitigate the divergence?

=⇒ Select the users judiciously −→ Select users with the highest amount of
data and discard the rest.

How is that beneficial?

=⇒
∑K

k=1
n(k)∑K

k=1
n(k) reduces, causing reduction in divergence.

16



Weight Divergence – Judicious User Selection

Problem Formulation:

[U] =⇒ Set of all users.

[US] =⇒ Set of selected users. ([US] ⊆ [U])

With τ being the threshold, for selecting users complying with |n(k)| ≥ τ .
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Weight Divergence – Judicious User Selection

Assumption: N users (with |n(k)| above τ ) are selected from a set of K
users.
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Weight Divergence – Judicious User Selection

Assumption: N users (with |n(k)| above τ ) are selected from a set of K
users.

Modified weight divergence:
∥∥∥∥w(f)

mT
− w

(c)
mT

∥∥∥∥ ≤
N∑

k=1

n(k)

n

(
a
(k)

)T ∥∥∥∥w(f)
(m−1)T

− w
(c)
(m−1)T

∥∥∥∥
+ η

N∑
k=1

n(k)

n

C∑
i=1

∥∥∥∥p(k)
(y = i) − p(y = i)

∥∥∥∥T−1∑
j=0

(
a
(k)

)j
gmax

(
w

(c)
mT−1−k

)
+ c̃

Where, c̃ =

∥∥∥∥∑K
k=N+1

n(k)

n
p(k)(y = i)∇wEx|y=i[log fi(x,w(m−1)T )]

∥∥∥∥
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Key Takeaways:

1. c̃ is a constant depending on selection of τ .

2.
(∥∥∥w(f)

mT −w
(c)
mT

∥∥∥)
U

≥

(∥∥∥w(f)
mT −w

(c)
mT

∥∥∥)
US

18



Weight Divergence – Judicious User Selection

What can possibly go wrong with such user selection technique?
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Weight Divergence – Judicious User Selection

What can possibly go wrong with such user selection technique?

The collectively learned model would be biased to a set of users having
higher n(k).
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Weight Divergence – Judicious User Selection

Any solution?
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Fairness in Federated Setup

Definition: 3 Given two trained models with parameters w and w′, a more
fair solution to the objective of the federated learning is obtained by model
w when,

V ar(A1, A2, . . . , AK) ≤ V ar(A′
1, A

′
2, . . . , A

′
K)

where Ai & A′
i, ∀i = 1, . . . ,K , are the accuracy obtained by using model w

and w′ respectively.

3Li et al., ‘Fair Resource Allocation in Federated Learning’, Pre-print, Available: https://arxiv.org/abs/1905.10497
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q-Fairness Model: 5

Resembling α-fairness 4, for q ≥ 0, a q-fair federated learning objective can
be expressed as,

min
w

ff
q (w) =

m∑
k=1

pk
q + 1

fq+1
k (w)

Note:

1. Hyper-parameter q is trained through an iterative algorithm.
2. q = 0 provides the classical definition of federated learning objective.

4T. Lan et al., ‘An axiomatic theory of fairness in network resource allocation’, In Conference on Information Communications, pages
1343–1351, 2010.
5Li et al., ‘Fair Resource Allocation in Federated Learning’, Pre-print, Available: https://arxiv.org/abs/1905.10497
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Future Works

1. A better user selection strategy by minimizing the bias introduced by the
model.

2. Combining communication-based techniques for user selection with a
data-driven selection technique.

3. Developing a user-reward strategy based on game theoretic formulations,
for example Stackelberg games.
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