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Motivation

Two player finite game

P1 is powerful enough to impose his strategy on the other player←− Leader

P2 matches optimally with P1’s strategy←− Follower

Such game is called Stackelberg game←− Proposed by H. von Stackelberg
(1934)
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Pure Strategy Nash Equilibria
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What is the NE?
=⇒ j∗ = 2 and k∗ = 2

=⇒ Associated cost = (1, 0)
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Pure Strategy Stackelberg Equilibria

Two player finite game
P1 is the leader and P2 is the follower
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Pure Strategy Stackelberg Equilibria

A =

 0 2 1.5

1 1 3

−1 2 2

 , B =

 −1 1 − 2
3

2 0 1

0 1 − 1
2


What is the safest strategy for P1?
=⇒ j∗ = 1

What is the best strategy for P2, knowing j∗ = 1?
=⇒ k∗ = 1

Associated cost = (0,−1)

Note: The cost is lesser than the NE cost (for both the players).
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Pure Strategy Stackelberg Equilibria

Is it always the case?
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Is it always the case?

−→ No!
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Pure Strategy Stackelberg Equilibria

Same cost matrices but P2 as leader and P1 as follower
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=⇒ k∗ = 3
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3
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3
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Pure Strategy Stackelberg Equilibria

A =

 0 2 1.5

1 1 3

−1 2 2

 , B =

 −1 1 − 2
3

2 0 1

0 1 − 1
2


What is the safest strategy for P2?
=⇒ k∗ = 3

What is the best strategy for P1, knowing k∗ = 3?
=⇒ j∗ = 1

Associated cost (−1.5,− 2
3
)

Note:

=⇒ The cost is lesser than the NE cost for only P2 (from 0 to − 2
3
)

=⇒ Cost increases for P1 (from 1 to 1.5)
9
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Pure Strategy Stackelberg Equilibria

A =

[
0 1 3

2 2 −1

]
, B =

[
0 0 1

−1 0 −1

]

Choose P1 as leader
=⇒ j∗ = 1

=⇒ k∗ = 1 or 2
=⇒ Associated cost = (0, 0) or (1, 0)
=⇒ Cost increases for both P1 and P2
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Stackelberg Game Formulation (in Pure Strategy)

Notations:
G (I,Ωi, Ji), I = 1, 2

P1: u1 ∈ Ω1, |Ω1|= m← Set of indicesM1 = {1, . . . , j, . . . ,m}

P2: u2 ∈ Ω2, |Ω2|= n← Set of indicesM2 = {1, . . . , k, . . . , n}

P1: Cost function J1 : Ω1 × Ω2 → R

P2: Cost function J2 : Ω1 × Ω2 → R

P1 is leader and P2 is the follower
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Stackelberg Game Formulation (in Pure Strategy)

Definition:
In a two-player finite game, with P1 being the leader choosing u1 ∈ Ω1 as his
strategy, optimal response of P2 or BR2(u1) ⊂ Ω2 is defined as,

BR2(u1) = {u∗
2 ∈ Ω2 : J2(u1, u

∗
2) ≤ J2(u1, u2), ∀u2 ∈ Ω2}
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Stackelberg Game Formulation (in Pure Strategy)

What is the Stackelberg cost for P1?
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Stackelberg Game Formulation (in Pure Strategy)

Definition:
In a two-player finite game, with P1 being the leader, u1 ∈ Ω1 is the
Stackelberg equilibrium strategy for P1,

J∗
1 = min

u1∈Ω1

max
u2∈BR2(u

∗
1)
J1(u1, u2)
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Stackelberg Game Formulation (in Pure Strategy)

Similar formulation can be obtained choosing P2 as leader
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Stackelberg Equilibria in Pure Strategy

Definition:
P1 being the leader with optimal strategy u∗

1 ∈ Ω1 and P2 with the optimal
strategy u∗

2 ∈ BR2(u
∗
1) Stackelburg solution of the game is defined by

u∗ = (u∗
1, u

∗
2).
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Stackelberg Equilibria in Pure Strategy

Definition:
P1 being the leader with optimal strategy u∗

1 ∈ Ω1 and P2 with the optimal
strategy u∗

2 ∈ BR2(u
∗
1) Stackelburg solution of the game is defined by

u∗ = (u∗
1, u

∗
2).

Note:
=⇒ The associated cost for P1: J∗

1 = J1(u
∗
1, u

∗
2)

=⇒ The associated cost for P2: J∗
2 = J2(u

∗
1, u

∗
2)

=⇒ Cost for P1 in NE: JNE
1 .
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Stackelberg Equilibria in Pure Strategy

Theorem:
If BR2(u1) is a singleton for u1 ∈ Ω1, then,

J∗
1 ≤ JNE

1
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Stackelberg Equilibria in Pure Strategy

Theorem:
If BR2(u1) is a singleton for u1 ∈ Ω1, then,

J∗
1 ≤ JNE

1

Proof. Can be proven by contradiction.
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Motivation

Recall from the pure strategy case
=⇒ u1 ∈ Ω1 and u2 ∈ Ω2 both are finite set. Also BR2(u1) ∈ Ω2 is also a
finite set for all u1 ∈ Ω1 ← A Stackelberg equilibria would always exist in
pure strategy
=⇒ P1 declares his strategy beforehand

Why do we need mixed strategy?
=⇒ Turns out, P1 can reduce his cost by choosing mixed strategy over pure
strategy

13



Notations

=⇒ G (I,Ωi, Ji), I = 1, 2

=⇒ Set of actions for P1: Ω1, |Ω1|= m← Set of indices
M1 = {1, . . . , j, . . . ,m}.

=⇒ Set of actions for P2: Ω2, |Ω2|= n← Set of indices
M2 = {1, . . . , k, . . . , n}.

=⇒ Probability of P1 selecting jth action: xj ,
∑m

j=1 xj = 1 and 0 ≤ xj ≤ 1.

=⇒ Probability of P2 selecting kth action: yk ,
∑n

k=1 yk = 1 and 0 ≤ yk ≤ 1.

=⇒ x = [x1, . . . , xj , . . . , xm]T and y = [y1, . . . , yk, . . . , yn]
T

=⇒ Mixed strategy set for P1: ∆1 = {x ∈ Rm|0 ≤ xj ≤ 1∀j;
∑m

j=1 xj = 1}.

=⇒ Mixed strategy set for P2: ∆2 = {Y ∈ Rn|0 ≤ yk ≤ 1, ∀k;
∑n

k=1 yk = 1}.
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A =
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]
, B =

[
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=⇒ Associated cost in NE: (1, 1
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)

=⇒ P1 mixes his strategy x∗ = [ 1
2
, 1
2
]T .
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Mixed Strategy Stackelberg Equilibria

Mixed strategy for P2 would be:

y∗ = argmin
y∈∆2

x∗By (1)

= argmin
y∈∆2

[
1

2
,
1

2

][
1
2

1

1 1
2

]
y (2)

= argmin
y∈∆2

[
3

4
,
3

4

]
y (3)

(4)
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Mixed Strategy Stackelberg Equilibria

A =

[
1 0

0 1

]
, B =

[
1
2

1

1 1
2

]

=⇒ Associated cost in NE: (1, 1
2
)

=⇒ P1 mixes his strategy x∗ = [ 1
2
, 1
2
]T .

=⇒ Expected cost in mixed strategy: ( 1
2
, 3
4
)

=⇒ Mixed strategy led to reduction in P1’s cost

Does a mixed strategy Stackelberg equilibria always exist?
Not really!
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Mixed Strategy Stackelberg Equilibria
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Mixed Strategy Stackelberg Equilibria
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Mixed Strategy Stackelberg Equilibria

A =

[
1 0

0 1

]
, B =

[
1
2

1

1 1
3

]

=⇒ There is no Stackelberg equilibrium in mixed strategies.

=⇒ There exists sub-optimal mixed strategy.
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Mixed Strategy Stackelberg Equilibria

A =

[
1 0

0 1

]
, B =

[
1
2

1

1 1
3

]

=⇒ There is no Stackelberg equilibrium in mixed strategies.

=⇒ There exists sub-optimal mixed strategy.

If Stackelberg mixed strategy exists, how is it related to NE?
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Mixed Strategy Stackelberg Equilibria

Theorem:
For a two player finite game, if the Stackelberg mixed strategy equilibria
exists, then the following holds,

J ′
1 ≤ JNE

1

15



Mixed Strategy Stackelberg Equilibria

Takeaways:
=⇒ In a two player finite game, mixed strategy NE would always exist.
Whereas, a mixed strategy Stackelberg equilibrium might not exist.
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Mixed Strategy Stackelberg Equilibria

Takeaways:
=⇒ In a two player finite game, mixed strategy NE would always exist.
Whereas, a mixed strategy Stackelberg equilibrium might not exist.
=⇒ If the mixed strategy Stackelberg equilibria exist, the player would incur
lower cost than that of the NE.
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What’s now?

Where can we apply these?
=⇒ Federated learning!

16
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Motivation

Is there a way to train a model without centralizing users’ data, i.e. ensuring
‘privacy by default’?
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Motivation

Is there a way to train a model without centralizing users’ data, i.e. ensuring
‘privacy by default’?

Goal
K number of users wish to train a state-of-the-art machine learning model,
collectively, without sharing their respective data Di, ∀i ∈ 1, . . . ,K ; to other
users.
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Federated Learning

Problem Formulation:
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labled data points (x,y) for each k, we consider a local objective function
of fk(w) = 1
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Federated Learning

Problem Formulation:
1. K number of workers participate in the learning process contributing to
a total of n number of data points.
2. Each worker, k, has a set of data points S of size n(k) = |S|, i.e. n =∑K

k=1 n
(k).

3. In order to train a machine learning model, with parameters w, on the
labled data points (x,y) for each k, we consider a local objective function
of fk(w) = 1

n(k)

∑
i∈S l(xi, yi;w).

4. In a federated setting, we can write the objective function ff (w) in the
following form,

min
w

ff (w) =

K∑
k=1

pkf
k(w) = Ek[f

k(w)]

where pk = n(k)

n
, pk ≥ 0 &

∑
k pk = 1

19



Challenges

How to motivate workers?
=⇒ Workers are using their own CPU power for the shared training.
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Challenges

How to motivate workers?
=⇒ Workers are using their own CPU power for the shared training.
=⇒ How would the server effectively allocate resources to achieve a global
accuracy with minimum iterations?
=⇒ How to develop a mechanism to motivate workers by optimizing the
resource allocation?

Stackelberg game formulation to address the challenges?
Work by Sarikaya and Erçetin indicates that 1

1Yunus Sarikaya and Özgür Erçetin, “Motivating Workers in Federated Learning: A Stackelberg
Game Perspective”, Arxiv, Aug. 2019. [Online] https://arxiv.org/abs/1908.03092

20



stackelberg game formulation in federated learning



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.
=⇒ Total time required for completing the t-th update by all K participating
workers is maxk Tk,t

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.
=⇒ Total time required for completing the t-th update by all K participating
workers is maxk Tk,t

=⇒ Tk,t is exponentially distributed with a mean Pk
ck

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.
=⇒ Total time required for completing the t-th update by all K participating
workers is maxk Tk,t

=⇒ Tk,t is exponentially distributed with a mean Pk
ck

=⇒ ck denotes the number of CPU cycles required by the worker to perform
t-th update

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.
=⇒ Total time required for completing the t-th update by all K participating
workers is maxk Tk,t

=⇒ Tk,t is exponentially distributed with a mean Pk
ck

=⇒ ck denotes the number of CPU cycles required by the worker to perform
t-th update ←− Worker needs to pay for this

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.
=⇒ Total time required for completing the t-th update by all K participating
workers is maxk Tk,t

=⇒ Tk,t is exponentially distributed with a mean Pk
ck

=⇒ ck denotes the number of CPU cycles required by the worker to perform
t-th update ←− Worker needs to pay for this
=⇒ Pk denote the CPU power that the worker allocates for the update

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.
=⇒ Total time required for completing the t-th update by all K participating
workers is maxk Tk,t

=⇒ Tk,t is exponentially distributed with a mean Pk
ck

=⇒ ck denotes the number of CPU cycles required by the worker to perform
t-th update ←− Worker needs to pay for this
=⇒ Pk denote the CPU power that the worker allocates for the update
Based on this he would have to negotiate with the server for reward

22



Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers
=⇒ Each worker k runs SGD locally on their own dataset and send back the
parameter update to the server for global update
=⇒ Tk,t is the time taken by k-th worker to perform t-th update.
=⇒ Total time required for completing the t-th update by all K participating
workers is maxk Tk,t

=⇒ Tk,t is exponentially distributed with a mean Pk
ck

=⇒ ck denotes the number of CPU cycles required by the worker to perform
t-th update ←− Worker needs to pay for this
=⇒ Pk denote the CPU power that the worker allocates for the update
Based on this he would have to negotiate with the server for reward
=⇒ If the server agrees to pay qk to k-th worker for per unit of CPU power,
worker k would get qkPk from the server to perform the t-th update.
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Problem Formulation

=⇒ Server (or the leader) sends the initial model update to all K workers

=⇒ Server’s cost function J ′, it can be defined as follows,

J ′ (qk, Pk) = αE
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max

k
Tk,t
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+

K∑
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qkPk

where α is a constant.
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=⇒ E [maxk Tk,t] from above equation can be represented by,

E
[
max

k
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=⇒ Server (or the leader) sends the initial model update to all K workers

=⇒ Server’s cost function J ′, it can be defined as follows,

J ′ (qk, Pk) = αE
[
max

k
Tk,t

]
+

K∑
k=1

qkPk

where α is a constant.

=⇒ E [maxk Tk,t] from above equation can be represented by,

E
[
max

k
Tk,t

]
=

∑
S⊆{1,2,...,K}

(−1)|S|−1 1∑
k∈S λk

where λk = Pk
ck

=⇒ Cost function of the worker, J ′′, can be defined by,

J ′′
k (Pk, qk) = qkPk − κck (Pk)

2

where κ is a chip architecture dependent constant
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Formulation of Stackelberg Game

=⇒ The game formulation for the worker can be as follows:

maxPk J ′′
k (Pk, qk) = qkPk − κck (Pk)

2

s.t.Pk ≤ Pmax

where Pmax represents the maximum available CPU power.
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Formulation of Stackelberg Game

=⇒ The game formulation for the worker can be as follows:

maxPk J ′′
k (Pk, qk) = qkPk − κck (Pk)

2

s.t.Pk ≤ Pmax

where Pmax represents the maximum available CPU power.

=⇒ Game formulation for the server would be,

minq J
′ = αE [maxk Tk,t] +

∑K
k=1 qkPk

s.t.
∑K

k=1 qkPk ≤ B

where B is the available budget to the server to pay the workers.
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Obtaining Stackelberg Equilibria

=⇒ Solving for the worker’s game,

P ∗
k (qk) =

{
qk

2κck
if qk

2κck
≤ Pmax

Pmax if qk
2κck

> Pmax
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Obtaining Stackelberg Equilibria

=⇒ Solving for the worker’s game,

P ∗
k (qk) =

{
qk

2κck
if qk

2κck
≤ Pmax

Pmax if qk
2κck

> Pmax

=⇒ Optimal solution for the server q∗k =
√

2Bκc
K
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Simulation Results

Figure: Analysis of delay with increase inK
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Simulation Results

Figure: Analysis of availability of budget and optimality of number of workers
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=⇒ Laying out the motivations behind studying the Stackelberg game, with
relevant examples

=⇒ Understanding of the pure-strategy Stackelberg equilibria and
comparison with the pure-strategy NE

=⇒ Understanding of the mixed-strategy Stackelberg equilibria, its
existence and comparison with the mixed-strategy NE

=⇒ Defining the problem of federated learning and its connection with the
Stackelberg game formulation

=⇒ Understanding the cost function formulation and obtaining the
Stackelberg equilibria solution for federated learning.
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=⇒ Convergence in federated learning depends on the amount of data one
worker pose, as ff (w) ∝ n(k)

n
←− How to use n(k) in the cost function to

obtain an optimal resource allocation technique?

=⇒ Authors considered the case of all honest workers←− Can a number of
dishonest workers manipulate the server to allocate more resource?
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Centralized Learning

Figure: Centralized learning
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federated Learning

Figure: Federated learning
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Federated Averaging (Fed−Avg) Algorithm 2

Until Convergence:

Server:

1. Select K number of users randomly.
2. Send wt, i.e. parameter update at tth iteration, to all K users.
User:
1. Download parameter update wt from the server.
2. Run SGD locally, for E epochs, and obtain wk

t .
3. Upload wt − wk

t to the server.
3. wt+1 = wt+ weighted average of the parameter updates by K users.

2McMahan et al., ‘Communication-efficient Learning of Deep Networks from Decentralized Data’, AISTATS, 2017.
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