STACKELBERG GAMES

Dipayan Mitra

Department of Electrical and Computer Engineering, University of Toronto

Introduction

Pure Strategy Stackelberg Equilibria

Mixed Strategy Stackelberg Equilibria

Federated Learning

Stackelberg Game Formulation in Federated Learning

Results and Analysis

Conclusions & Future Works

INTRODUCTION

P1 is powerful enough to impose his strategy on the other player

P1 is powerful enough to impose his strategy on the other player \leftarrow Leader

P1 is powerful enough to impose his strategy on the other player \leftarrow Leader P2 matches optimally with P1's strategy

P1 is powerful enough to impose his strategy on the other player \leftarrow Leader P2 matches optimally with P1's strategy \leftarrow Follower

P1 is powerful enough to impose his strategy on the other player ← Leader P2 matches optimally with P1's strategy ← Follower

Such game is called Stackelberg game

P1 is powerful enough to impose his strategy on the other player \leftarrow Leader P2 matches optimally with P1's strategy \leftarrow Follower Such game is called Stackelberg game \leftarrow Proposed by H. von Stackelberg (1934) Government setting up policies for spectrum auction

Government setting up policies for spectrum auction ← Leader

Government setting up policies for spectrum auction \longleftarrow Leader Participating companies coming up with strategies based on the government's policy

Government setting up policies for spectrum auction \leftarrow Leader Participating companies coming up with strategies based on the government's policy \leftarrow Follower Antivirus company releasing update

Antivirus company releasing update \leftarrow Leader

Antivirus company releasing update ← Leader Malicious agents' strategy to exploit the loopholes Antivirus company releasing update ← Leader

Malicious agents' strategy to exploit the loopholes \leftarrow Follower

PURE STRATEGY STACKELBERG EQUILIBRIA

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the NE?

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the NE?

 $\Longrightarrow j^* = 2$ and $k^* = 2$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the NE?

$$\implies j^* = 2 \text{ and } k^* = 2$$

 $\implies \text{Associated cost} = (1,0)$

P1 is the leader and P2 is the follower

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P1?

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P1?

 $\Longrightarrow j^* = 1$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P1? $\implies j^* = 1$

What is the best strategy for P2, knowing $j^* = 1$?

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P1? $\implies j^* = 1$

What is the best strategy for P2, knowing $j^*=1?$ $\Longrightarrow k^*=1$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P1?

 $\Longrightarrow j^* = 1$

What is the best strategy for P2, knowing $j^* = 1$?

 $\implies k^* = 1$

Associated cost = (0, -1)

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P1?

 $\Longrightarrow j^* = 1$

What is the best strategy for P2, knowing $j^* = 1$? $\implies k^* = 1$

Associated cost = (0, -1)

Note: The cost is lesser than the NE cost (for both the players).

Is it always the case?

Is it always the case?

 $\longrightarrow No!$

Same cost matrices but P2 as leader and P1 as follower

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

 $\implies k^* = 3$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P2? $\implies k^* = 3$

What is the best strategy for P1, knowing $k^* = 3$?

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

 $\implies k^* = 3$

What is the best strategy for P1, knowing $k^*=3?$ $\Longrightarrow j^*=1$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

 $\implies k^* = 3$

What is the best strategy for P1, knowing $k^* = 3$?

 $\Longrightarrow j^* = 1$

Associated cost $(-1.5, -\frac{2}{3})$

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

 $\implies k^* = 3$

What is the best strategy for P1, knowing $k^* = 3$? $\implies j^* = 1$

Associated cost $(-1.5, -\frac{2}{3})$

Note:

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

What is the safest strategy for P2? $\implies k^* = 3$

What is the best strategy for P1, knowing $k^* = 3$? $\implies j^* = 1$

Associated cost $(-1.5, -\frac{2}{3})$

Note:

 \implies The cost is lesser than the NE cost for only P2 (from 0 to $-\frac{2}{3}$)

$$A = \begin{bmatrix} 0 & 2 & 1.5 \\ 1 & 1 & 3 \\ -1 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 & -\frac{2}{3} \\ 2 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

 $\implies k^* = 3$

What is the best strategy for P1, knowing $k^* = 3$? $\implies j^* = 1$

Associated cost $(-1.5, -\frac{2}{3})$

Note:

 \implies The cost is lesser than the NE cost for only P2 (from 0 to $-\frac{2}{3}$)

 \implies Cost increases for P1 (from 1 to 1.5)

Does Stackelberg game setup always reduce the cost for either of the players, when compared with NE?

Does Stackelberg game setup always reduce the cost for either of the players, when compared with NE?

 \implies No!

$$A = \left[\begin{array}{rrr} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{rrr} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

$$A = \left[\begin{array}{rrr} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{rrr} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

What is the NE?

$$A = \begin{bmatrix} 0 & 1 & 3 \\ 2 & 2 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$

What is the NE? \implies NE at (2,3)

$$A = \left[\begin{array}{ccc} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{ccc} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

What is the NE?

- \implies NE at (2,3)
- \implies Associated cost (-1, -1)

$$A = \left[\begin{array}{rrr} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{rrr} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

Choose P1 as leader

$$A = \left[\begin{array}{ccc} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{ccc} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

Choose P1 as leader
$$\implies j^* = 1$$

$$A = \left[\begin{array}{ccc} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{ccc} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

Choose P1 as leader

$$\implies j^* = 1$$

 $\implies k^* = 1 \text{ or } 2$

$$A = \left[\begin{array}{ccc} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{ccc} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

Choose P1 as leader

 $\Longrightarrow j^* = 1$ $\Longrightarrow k^* = 1 \text{ or } 2$ $\Longrightarrow \text{Associated cost} = (0,0) \text{ or } (1,0)$

$$A = \left[\begin{array}{rrr} 0 & 1 & 3 \\ 2 & 2 & -1 \end{array} \right], B = \left[\begin{array}{rrr} 0 & 0 & 1 \\ -1 & 0 & -1 \end{array} \right]$$

Choose P1 as leader

- $\implies j^* = 1$
- $\Longrightarrow k^* = 1 \text{ or } 2$
- \implies Associated cost = (0,0) or (1,0)
- \implies Cost increases for both P1 and P2

Notations:

 $\mathscr{G}(I,\Omega_i,J_i), I=1,2$

P1: $u_1 \in \Omega_1$, $|\Omega_1| = m \leftarrow$ Set of indices $M1 = \{1, \dots, j, \dots, m\}$

P2: $u_2 \in \Omega_2$, $|\Omega_2| = n \leftarrow$ Set of indices $M2 = \{1, \dots, k, \dots, n\}$

P1: Cost function $J_1: \Omega_1 \times \Omega_2 \to \mathbb{R}$

P2: Cost function $J_2: \Omega_1 \times \Omega_2 \to \mathbb{R}$

P1 is leader and P2 is the follower

In a two-player finite game, with P1 being the leader choosing $u_1 \in \Omega_1$ as his strategy, optimal response of P2 or $BR_2(u_1) \subset \Omega_2$ is defined as,

$$BR_2(u_1) = \{u_2^* \in \Omega_2 : J_2(u_1, u_2^*) \le J_2(u_1, u_2), \forall u_2 \in \Omega_2\}$$

What is the Stackelberg cost for P1?

In a two-player finite game, with P1 being the leader, $u_1 \in \Omega_1$ is the Stackelberg equilibrium strategy for P1,

$$J_1^* = \min_{u_1 \in \Omega_1} \max_{u_2 \in BR_2(u_1^*)} J_1(u_1, u_2)$$

Similar formulation can be obtained choosing P2 as leader

P1 being the leader with optimal strategy $u_1^* \in \Omega_1$ and P2 with the optimal strategy $u_2^* \in BR_2(u_1^*)$ Stackelburg solution of the game is defined by $u^* = (u_1^*, u_2^*)$.

P1 being the leader with optimal strategy $u_1^* \in \Omega_1$ and P2 with the optimal strategy $u_2^* \in BR_2(u_1^*)$ Stackelburg solution of the game is defined by $u^* = (u_1^*, u_2^*)$.

Note:

 \implies The associated cost for P1: $J_1^* = J_1(u_1^*, u_2^*)$

P1 being the leader with optimal strategy $u_1^* \in \Omega_1$ and P2 with the optimal strategy $u_2^* \in BR_2(u_1^*)$ Stackelburg solution of the game is defined by $u^* = (u_1^*, u_2^*)$.

Note:

- \implies The associated cost for P1: $J_1^* = J_1(u_1^*, u_2^*)$
- \implies The associated cost for P2: $J_2^* = J_2(u_1^*, u_2^*)$

P1 being the leader with optimal strategy $u_1^* \in \Omega_1$ and P2 with the optimal strategy $u_2^* \in BR_2(u_1^*)$ Stackelburg solution of the game is defined by $u^* = (u_1^*, u_2^*)$.

Note:

- \implies The associated cost for P1: $J_1^* = J_1(u_1^*, u_2^*)$
- \implies The associated cost for P2: $J_2^* = J_2(u_1^*, u_2^*)$
- \implies Cost for P1 in NE: J_1^{NE} .

Theorem: If $BR_2(u_1)$ is a singleton for $u_1 \in \Omega_1$, then,

 $J_1^* \leq J_1^{NE}$

Theorem: If $BR_2(u_1)$ is a singleton for $u_1\in\Omega_1$, then,

 $J_1^* \leq J_1^{NE}$

Proof. Can be proven by contradiction.

MIXED STRATEGY STACKELBERG EQUILIBRIA

 $\implies u_1 \in \Omega_1$ and $u_2 \in \Omega_2$ both are finite set. Also $BR_2(u_1) \in \Omega_2$ is also a finite set for all $u_1 \in \Omega_1$

 $\implies u_1 \in \Omega_1$ and $u_2 \in \Omega_2$ both are finite set. Also $BR_2(u_1) \in \Omega_2$ is also a finite set for all $u_1 \in \Omega_1 \leftarrow A$ Stackelberg equilibria would always exist in pure strategy

 $\implies u_1 \in \Omega_1$ and $u_2 \in \Omega_2$ both are finite set. Also $BR_2(u_1) \in \Omega_2$ is also a finite set for all $u_1 \in \Omega_1 \leftarrow A$ Stackelberg equilibria would always exist in pure strategy

 \Longrightarrow P1 declares his strategy beforehand

Recall from the pure strategy case

 $\implies u_1 \in \Omega_1$ and $u_2 \in \Omega_2$ both are finite set. Also $BR_2(u_1) \in \Omega_2$ is also a finite set for all $u_1 \in \Omega_1 \leftarrow A$ Stackelberg equilibria would always exist in pure strategy

 \Longrightarrow P1 declares his strategy beforehand

Why do we need mixed strategy?

Recall from the pure strategy case

 $\implies u_1 \in \Omega_1$ and $u_2 \in \Omega_2$ both are finite set. Also $BR_2(u_1) \in \Omega_2$ is also a finite set for all $u_1 \in \Omega_1 \leftarrow A$ Stackelberg equilibria would always exist in pure strategy

 \Longrightarrow P1 declares his strategy beforehand

Why do we need mixed strategy?

 \Longrightarrow Turns out, P1 can reduce his cost by choosing mixed strategy over pure strategy

 $\Longrightarrow \mathscr{G}(I,\Omega_i,J_i), I=1,2$

 \implies Set of actions for P1: Ω_1 , $|\Omega_1| = m \leftarrow$ Set of indices $M1 = \{1, \dots, j, \dots, m\}.$

 $\implies \text{Set of actions for P2: } \Omega_2, |\Omega_2| = n \leftarrow \text{Set of indices}$ $M2 = \{1, \dots, k, \dots, n\}.$

 \implies Probability of P1 selecting j^{th} action: x_j , $\sum_{j=1}^m x_j = 1$ and $0 \le x_j \le 1$.

- \implies Probability of P2 selecting k^{th} action: y_k , $\sum_{k=1}^n y_k = 1$ and $0 \le y_k \le 1$.
- $\implies \mathbf{x} = [x_1, \dots, x_j, \dots, x_m]^T$ and $\mathbf{y} = [y_1, \dots, y_k, \dots, y_n]^T$
- \implies Mixed strategy set for P1: $\Delta_1 = \{ \mathbf{x} \in \mathbb{R}^m | 0 \le x_j \le 1 \forall j; \sum_{j=1}^m x_j = 1 \}.$
- \implies Mixed strategy set for P2: $\Delta_2 = \{ \mathbf{Y} \in \mathbb{R}^n | 0 \le y_k \le 1, \forall k; \sum_{k=1}^n y_k = 1 \}.$

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{array} \right]$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{bmatrix}$$

 \implies Associated cost in NE: $(1, \frac{1}{2})$

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{array} \right]$$

- \implies Associated cost in NE: $(1, \frac{1}{2})$
- \implies P1 mixes his strategy $\mathbf{x}^* = [\frac{1}{2}, \frac{1}{2}]^T$.

Mixed strategy for P2 would be:

$$\mathbf{y}^{*} = \operatorname*{arg\,min}_{y \in \Delta_{2}} \mathbf{x}^{*} B \mathbf{y}$$
(1)
$$= \operatorname{arg\,min}_{y \in \Delta_{2}} \left[\frac{1}{2}, \frac{1}{2} \right] \left[\begin{array}{c} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{array} \right] \mathbf{y}$$
(2)
$$= \operatorname{arg\,min}_{y \in \Delta_{2}} \left[\frac{3}{4}, \frac{3}{4} \right] \mathbf{y}$$
(3)
(4)

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{bmatrix}$$

- \implies Associated cost in NE: $(1, \frac{1}{2})$
- \implies P1 mixes his strategy $\mathbf{x}^* = [\frac{1}{2}, \frac{1}{2}]^T$.
- \implies Expected cost in mixed strategy: $(\frac{1}{2}, \frac{3}{4})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{bmatrix}$$

- \implies Associated cost in NE: $(1, \frac{1}{2})$
- \implies P1 mixes his strategy $\mathbf{x}^* = [\frac{1}{2}, \frac{1}{2}]^T$.
- \implies Expected cost in mixed strategy: $(\frac{1}{2}, \frac{3}{4})$
- \implies Mixed strategy led to reduction in P1's cost

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{array} \right]$$

- \implies Associated cost in NE: $(1, \frac{1}{2})$
- \implies P1 mixes his strategy $\mathbf{x}^* = [\frac{1}{2}, \frac{1}{2}]^T$.
- \implies Expected cost in mixed strategy: $(\frac{1}{2}, \frac{3}{4})$
- \implies Mixed strategy led to reduction in P1's cost

Does a mixed strategy Stackelberg equilibria always exist?

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{array} \right]$$

- \implies Associated cost in NE: $(1, \frac{1}{2})$
- \implies P1 mixes his strategy $\mathbf{x}^* = [\frac{1}{2}, \frac{1}{2}]^T$.
- \implies Expected cost in mixed strategy: $(\frac{1}{2}, \frac{3}{4})$
- \implies Mixed strategy led to reduction in P1's cost

Does a mixed strategy Stackelberg equilibria always exist? Not really!

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 1 & \frac{1}{3} \end{array} \right]$$

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 1 & \frac{1}{3} \end{array} \right]$$

 \implies There is no Stackelberg equilibrium in mixed strategies.

$$A = \left[\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} \frac{1}{2} & 1\\ 1 & \frac{1}{3} \end{array} \right]$$

 \implies There is no Stackelberg equilibrium in mixed strategies.

 \implies There exists sub-optimal mixed strategy.

$$A = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{2} & 1\\ 1 & \frac{1}{3} \end{bmatrix}$$

 \implies There is no Stackelberg equilibrium in mixed strategies.

 \implies There exists sub-optimal mixed strategy.

If Stackelberg mixed strategy exists, how is it related to NE?

Theorem:

For a two player finite game, if the Stackelberg mixed strategy equilibria exists, then the following holds,

 $J_1' \le J_1^{NE}$

Takeaways:

 \implies In a two player finite game, mixed strategy NE would always exist. Whereas, a mixed strategy Stackelberg equilibrium might not exist.

Takeaways:

⇒ In a two player finite game, mixed strategy NE would always exist.
 Whereas, a mixed strategy Stackelberg equilibrium might not exist.
 ⇒ If the mixed strategy Stackelberg equilibria exist, the player would incur lower cost than that of the NE.

Where can we apply these?

Where can we apply these?

 \implies Federated learning!

FEDERATED LEARNING

Is there a way to train a model without centralizing users' data, i.e. ensuring 'privacy by default'?

Is there a way to train a model without centralizing users' data, i.e. ensuring 'privacy by default'?

Goal

K number of users wish to train a state-of-the-art machine learning model, collectively, without sharing their respective data $\mathcal{D}_i, \forall i \in 1, ..., K$; to other users.

1. K number of workers participate in the learning process contributing to a total of n number of data points.

1. K number of workers participate in the learning process contributing to a total of n number of data points.

2. Each worker, k, has a set of data points **S** of size $n^{(k)} = |\mathbf{S}|$, i.e. $n = \sum_{k=1}^{K} n^{(k)}$.

1. K number of workers participate in the learning process contributing to a total of n number of data points.

2. Each worker, k, has a set of data points **S** of size $n^{(k)} = |\mathbf{S}|$, i.e. $n = \sum_{k=1}^{K} n^{(k)}$.

3. In order to train a machine learning model, with parameters w, on the labled data points (\mathbf{x}, \mathbf{y}) for each k, we consider a local objective function of $f^k(w) = \frac{1}{n^{(k)}} \sum_{i \in \mathbf{S}} l(x_i, y_i; w)$.

1. K number of workers participate in the learning process contributing to a total of n number of data points.

2. Each worker, k, has a set of data points **S** of size $n^{(k)} = |\mathbf{S}|$, i.e. $n = \sum_{k=1}^{K} n^{(k)}$.

3. In order to train a machine learning model, with parameters w, on the labled data points (\mathbf{x}, \mathbf{y}) for each k, we consider a local objective function of $f^k(w) = \frac{1}{n^{(k)}} \sum_{i \in \mathbf{S}} l(x_i, y_i; w)$.

4. In a federated setting, we can write the objective function $f^{f}(w)$ in the following form,

$$\min_{w} f^{f}(w) = \sum_{k=1}^{K} p_{k} f^{k}(w) = \mathbb{E}_{k}[f^{k}(w)]$$

where $p_k = rac{n^{(k)}}{n}$, $p_k \geq 0$ & $\sum_k p_k = 1$

 \Longrightarrow Workers are using their own CPU power for the shared training.

- \Longrightarrow Workers are using their own CPU power for the shared training.
- \implies How would the server effectively allocate resources to achieve a global accuracy with minimum iterations?

 \Longrightarrow Workers are using their own CPU power for the shared training.

 \implies How would the server effectively allocate resources to achieve a global accuracy with minimum iterations?

 \Longrightarrow How to develop a mechanism to motivate workers by optimizing the resource allocation?

- \Longrightarrow Workers are using their own CPU power for the shared training.
- \implies How would the server effectively allocate resources to achieve a global accuracy with minimum iterations?
- \Longrightarrow How to develop a mechanism to motivate workers by optimizing the resource allocation?

Stackelberg game formulation to address the challenges?

 \Longrightarrow Workers are using their own CPU power for the shared training.

 \implies How would the server effectively allocate resources to achieve a global accuracy with minimum iterations?

 \Longrightarrow How to develop a mechanism to motivate workers by optimizing the resource allocation?

Stackelberg game formulation to address the challenges?

Work by Sarikaya and Erçetin indicates that ¹

¹Yunus Sarikaya and Özgür Erçetin, "Motivating Workers in Federated Learning: A Stackelberg Game Perspective", Arxiv, Aug. 2019. [Online] https://arxiv.org/abs/1908.03092

STACKELBERG GAME FORMULATION IN FEDERATED LEARNING

 \implies Server (or the leader) sends the initial model update to all K workers

 \implies Server (or the leader) sends the initial model update to all K workers \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update \implies Server (or the leader) sends the initial model update to all K workers \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update $\implies T_{k,t}$ is the time taken by k-th worker to perform t-th update.

- \implies Server (or the leader) sends the initial model update to all K workers \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update
- \implies $T_{k,t}$ is the time taken by k-th worker to perform t-th update.
- \Longrightarrow Total time required for completing the t-th update by all K participating workers is $\max_k T_{k,t}$

- \implies Server (or the leader) sends the initial model update to all K workers \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update
- $\implies T_{k,t}$ is the time taken by k-th worker to perform t-th update.
- \implies Total time required for completing the t-th update by all K participating workers is $\max_k T_{k,t}$
- \implies $T_{k,t}$ is exponentially distributed with a mean $\frac{P_k}{c_k}$

 \implies Server (or the leader) sends the initial model update to all K workers \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update

 \implies $T_{k,t}$ is the time taken by k-th worker to perform t-th update.

 \Longrightarrow Total time required for completing the t-th update by all K participating workers is $\max_k T_{k,t}$

 \implies $T_{k,t}$ is exponentially distributed with a mean $\frac{P_k}{c_k}$

 \implies c_k denotes the number of CPU cycles required by the worker to perform t-th update

- \implies Server (or the leader) sends the initial model update to all K workers \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update
- $\implies T_{k,t}$ is the time taken by k-th worker to perform t-th update.
- \Longrightarrow Total time required for completing the t-th update by all K participating workers is $\max_k T_{k,t}$
- \implies $T_{k,t}$ is exponentially distributed with a mean $\frac{P_k}{c_k}$
- \Longrightarrow c_k denotes the number of CPU cycles required by the worker to perform
- t-th update \leftarrow Worker needs to pay for this

- \implies Server (or the leader) sends the initial model update to all K workers \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update
- \implies $T_{k,t}$ is the time taken by k-th worker to perform t-th update.
- \implies Total time required for completing the t-th update by all K participating workers is $\max_k T_{k,t}$
- \implies $T_{k,t}$ is exponentially distributed with a mean $\frac{P_k}{c_k}$
- \implies c_k denotes the number of CPU cycles required by the worker to perform t-th update \leftarrow Worker needs to pay for this
- \implies P_k denote the CPU power that the worker allocates for the update

- \implies Server (or the leader) sends the initial model update to all K workers
- \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update
- $\implies T_{k,t}$ is the time taken by k-th worker to perform t-th update.
- \implies Total time required for completing the *t*-th update by all *K* participating workers is $\max_k T_{k,t}$
- \implies $T_{k,t}$ is exponentially distributed with a mean $\frac{P_k}{C_k}$
- \implies c_k denotes the number of CPU cycles required by the worker to perform t-th update \leftarrow Worker needs to pay for this
- \implies P_k denote the CPU power that the worker allocates for the update Based on this he would have to negotiate with the server for reward

- \implies Server (or the leader) sends the initial model update to all K workers
- \implies Each worker k runs SGD locally on their own dataset and send back the parameter update to the server for global update
- $\implies T_{k,t}$ is the time taken by k-th worker to perform t-th update.
- \Longrightarrow Total time required for completing the t-th update by all K participating workers is $\max_k T_{k,t}$
- \implies $T_{k,t}$ is exponentially distributed with a mean $\frac{P_k}{c_k}$
- \implies c_k denotes the number of CPU cycles required by the worker to perform t-th update \leftarrow Worker needs to pay for this
- \implies P_k denote the CPU power that the worker allocates for the update Based on this he would have to negotiate with the server for reward
- \implies If the server agrees to pay q_k to k-th worker for per unit of CPU power, worker k would get $q_k P_k$ from the server to perform the t-th update.

 \implies Server's cost function J', it can be defined as follows,

$$J'(q_k, P_k) = \alpha \mathbb{E}\left[\max_k T_{k,t}\right] + \sum_{k=1}^{K} q_k P_k$$

where α is a constant.

 \implies Server's cost function J', it can be defined as follows,

$$J'(q_k, P_k) = \alpha \mathbb{E}\left[\max_k T_{k,t}\right] + \sum_{k=1}^{K} q_k P_k$$

where α is a constant.

 $\implies \mathbb{E}\left[\max_{k} T_{k,t}\right]$ from above equation can be represented by,

$$\mathbb{E}\left[\max_{k} T_{k,t}\right] = \sum_{\mathbf{S} \subseteq \{1,2,\dots,K\}} (-1)^{|\mathbf{S}|-1} \frac{1}{\sum_{k \in S} \lambda_k}$$

where $\lambda_k = rac{P_k}{c_k}$

 \implies Server's cost function J', it can be defined as follows,

$$J'(q_k, P_k) = \alpha \mathbb{E}\left[\max_k T_{k,t}\right] + \sum_{k=1}^{K} q_k P_k$$

where α is a constant.

 $\implies \mathbb{E}\left[\max_{k} T_{k,t}\right] \text{ from above equation can be represented by,} \\ \mathbb{E}\left[\max_{k} T_{k,t}\right] = \sum_{\mathbf{S} \subseteq \{1,2,\dots,K\}} (-1)^{|\mathbf{S}|-1} \frac{1}{\sum_{k \in S} \lambda_k}$

where $\lambda_k = \frac{P_k}{c_k}$ \implies Cost function of the worker, J'', can be defined by,

$$J_{k}^{\prime\prime}(P_{k},q_{k}) = q_{k}P_{k} - \kappa c_{k}\left(P_{k}\right)^{2}$$

where κ is a chip architecture dependent constant

 \implies The game formulation for the worker can be as follows:

$$\max_{P_k} J_k''(P_k, q_k) = q_k P_k - \kappa c_k (P_k)^2$$

s.t. $P_k \le P_{\max}$

where P_{\max} represents the maximum available CPU power.

 \implies The game formulation for the worker can be as follows:

$$\max_{P_k} J_k''(P_k, q_k) = q_k P_k - \kappa c_k (P_k)^2$$

s.t. $P_k \le P_{\max}$

where P_{max} represents the maximum available CPU power.

 \Longrightarrow Game formulation for the server would be,

$$\min_{\boldsymbol{q}} J' = \alpha \mathbb{E} \left[\max_{k} T_{k,t} \right] + \sum_{k=1}^{K} q_k P_k$$

s.t. $\sum_{k=1}^{K} q_k P_k \leq B$

where B is the available budget to the server to pay the workers.

 \implies Solving for the worker's game,

$$P_k^*(q_k) = \begin{cases} \frac{q_k}{2\kappa c_k} \text{ if } \frac{q_k}{2\kappa c_k} \le P_{\max} \\ P_{\max} \text{ if } \frac{q_k}{2\kappa c_k} > P_{\max} \end{cases}$$

 \implies Solving for the worker's game,

$$P_k^*(q_k) = \begin{cases} \frac{q_k}{2\kappa c_k} \text{ if } \frac{q_k}{2\kappa c_k} \le P_{\max} \\ P_{\max} \text{ if } \frac{q_k}{2\kappa c_k} > P_{\max} \end{cases}$$

 \Longrightarrow Optimal solution for the server $q_k^*=\sqrt{\frac{2B\kappa c}{K}}$

RESULTS AND ANALYSIS

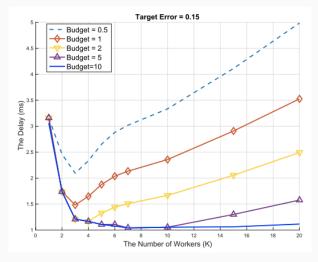


Figure: Analysis of delay with increase in K

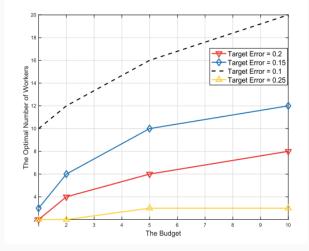


Figure: Analysis of availability of budget and optimality of number of workers

CONCLUSIONS & FUTURE WORKS

 \Longrightarrow Understanding of the pure-strategy Stackelberg equilibria and comparison with the pure-strategy NE

 \Longrightarrow Understanding of the pure-strategy Stackelberg equilibria and comparison with the pure-strategy NE

 \Longrightarrow Understanding of the mixed-strategy Stackelberg equilibria, its existence and comparison with the mixed-strategy NE

- \Longrightarrow Laying out the motivations behind studying the Stackelberg game, with relevant examples
- \Longrightarrow Understanding of the pure-strategy Stackelberg equilibria and comparison with the pure-strategy NE
- \Longrightarrow Understanding of the mixed-strategy Stackelberg equilibria, its existence and comparison with the mixed-strategy NE
- \Longrightarrow Defining the problem of federated learning and its connection with the Stackelberg game formulation

 \Longrightarrow Understanding of the pure-strategy Stackelberg equilibria and comparison with the pure-strategy NE

 \Longrightarrow Understanding of the mixed-strategy Stackelberg equilibria, its existence and comparison with the mixed-strategy NE

 \Longrightarrow Defining the problem of federated learning and its connection with the Stackelberg game formulation

 \implies Understanding the cost function formulation and obtaining the Stackelberg equilibria solution for federated learning.

 \Longrightarrow Convergence in federated learning depends on the amount of data one worker pose, as $f^f(w) \propto \frac{n^{(k)}}{n}$

 \implies Convergence in federated learning depends on the amount of data one worker pose, as $f^f(w) \propto \frac{n^{(k)}}{n} \longleftarrow$ How to use $n^{(k)}$ in the cost function to obtain an optimal resource allocation technique?

 \implies Convergence in federated learning depends on the amount of data one worker pose, as $f^f(w) \propto \frac{n^{(k)}}{n} \longleftarrow$ How to use $n^{(k)}$ in the cost function to obtain an optimal resource allocation technique?

 \Longrightarrow Authors considered the case of all honest workers

 \implies Convergence in federated learning depends on the amount of data one worker pose, as $f^f(w) \propto \frac{n^{(k)}}{n} \longleftarrow$ How to use $n^{(k)}$ in the cost function to obtain an optimal resource allocation technique?

 \implies Authors considered the case of all honest workers \leftarrow Can a number of dishonest workers manipulate the server to allocate more resource?

BACKUP SLIDES

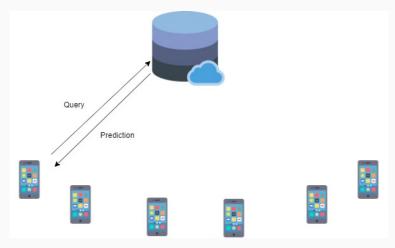


Figure: Centralized learning

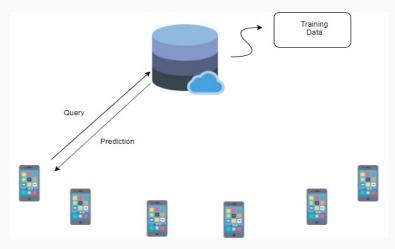


Figure: Centralized learning

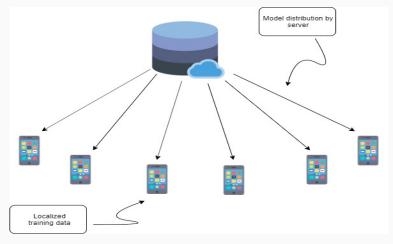


Figure: Federated learning

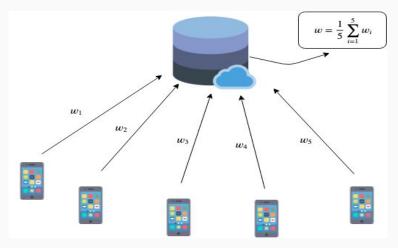


Figure: Federated learning

Until Convergence:

Server:

- 1. Select *K* number of users randomly.
- 2. Send w_t , i.e. parameter update at t^{th} iteration, to all K users.

User:

- 1. Download parameter update w_t from the server.
- 2. Run SGD locally, for E epochs, and obtain $\boldsymbol{w}_t^k.$
- 3. Upload $w_t w_t^k$ to the server.
- 3. $w_{t+1} = w_t$ + weighted average of the parameter updates by K users.

² McMahan *et al.*, 'Communication-efficient Learning of Deep Networks from Decentralized Data', AISTATS, 2017.