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introduction



Introduction

1. Millions of connected devices generating huge amount of unprocessed
data.
2. How to train a large enough machine learning model without
centralizing data?
→ Distributed processing exploiting data-parallelism.
3. Distributed processing is adopted for training large scale machine
learning models.
4. How to optimize such a model?
→ Synchronous SGD (Sync-SGD).
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Sync-SGD

Until Convergence:

Server:

1. Select K number of users randomly.
2. Send wt , i.e. parameter update at tth iteration, to all K users.
User:
1. Download parameter update wt from the server.
2. Run SGD locally (on the local dataset) and obtain g(k)

t
.

3. Upload g(k)
t

to the server.
3. Aggregate gradients: gt =

1
K

∑K
k=1 g

(k)
t .

4. Update model parameters: wt+1 = wt − γgt

4



Sync-SGD

Figure: Sync-SGD (parameter download)
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Sync-SGD

Figure: Sync-SGD (parameter upload)

4



Challenge?

What is the biggest challenge in Sync-SGD?
→ Gradient communication between the parameter server and the worker
causing bottleneck.
1. Gradient communication cost subsides gradient computation cost 1.
Way out: Gradient compression

1Yao et al., ‘Two-stream federated learning: Reduce the communication costs’, IEEE Visual Communications and Image Processing (VCIP),
2018.
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Literature Survey

1. Gradient sparsification, compression and quantization techniques have
been introduced.
2. Communicate top-k gradients 2. (sparsification)
3. Sign-SGD: 1-bit quantized gradients 3. (quantization)
4. TernGrad: Quantize gradients to {−1, 0, 1} 4. (quantization)
4. Sketched SGD: Send the sketches of gradient 5. (compression)
Is there a way to combine sparsification, compression and quantization?
→ Quantized compressive sensing

2Stich et al., ‘Sparsified SGD with memory’, NIPS, 2018.
3Bernstein et al., ‘signSGD: Compressed optimisation for non-convex problems’, ICML, 2018.
4Wen et al., ‘TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning’, NIPS, 2017.
5Ivkin et al., ‘Communication-efficient Distributed SGD with Sketching’, NIPS, 2019.
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Gradient Sparsity

Are gradients sparse?
1. Sparsity is induced by ReLU activation function.
f(x) = max(0, x) → Forcing all x < 0 to 0

2. 44% of operations performed in most of the modern DNNs, for example
AlexNet, GoogLeNet etc., are ineffective.

Figure: Average fraction of zero input neuron values in convolutional layer multiplication 6

6Albericio et al., ‘Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing’, EEE ISCA, 2016.
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Compressive Sensing

1. A sampling technique for signals which are sparse or compressible in
some known basis 7.
2. Measurement matrix ΦM×N is chosen to be a random matrix to obtain
measurement vector yM×1 from signal xN×1 as,

yM×1 = ΦM×NxN×1

3. Signal is recovered by solving LP optimization problem as follows:

x̂ = argmin
x

∥x∥1 s.t. y = Φx

7D. Donoho, ‘Compressive Sensing’, IEEE Transactions on Information Theory, 2006.
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Quantized Compressive Sensing (QCS)

1. Quantization is modelled as as an additive measurement noise in
quantized compressive sensing 8: y = Q(Φx) = Φx+ e

2. Measurement noise n is bounded by the quantization interval ∆ and
the dimension of the compressed measurement (M ): ||e||2 ≤

√
M∆2

12
= ϵ

Signal reconstructed by solving an optimization problem.

x̂ = argmin
x

∥x∥1 s.t. ∥y − Φx∥2 ≤ ϵ

3. Reconstruction error ||x̂− x||2 = ||n||2 ≤ β

Issue?
→ LP-based reconstruction is slow and computationally demanding.

8Boufounos et al., ‘1-Bit compressive sensing’, 42nd Annual Conference on Information Sciences and Systems., 2008.
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Proposed Algorithm

1. Use quantized compressive sensing to compress the sparse gradients.
2. Quantized compressed measurement vectors y(k)

t are obtained for each
worker (k).

y
(k)
t = Q(Φg

(k)
t )

3. Quantized compressed measurements y(k)
t are sent to the parameter

server.
4. At the parameter server the quantized compressed measurements are
recovered to obtain g̃

(k)
t .

5. Parameter server performs gradient aggregation: g̃t =
1
K

∑K
k=1 g̃

(k)
t .

6. Parameters are updated following the update rule and sent back to
each worker.

wt+1 = wt − γg̃t

Advantage: Quantization is performed on the compressed gradients
lowering communication cost over standard gradient quantization
approaches (where quantization is performed directly on the gradients).
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Assumptions

1. (Lower bound assumption) ∀w and some constant f∗, global objective
function f(w) > f∗.
2. (Smoothness assumption) Let ḡ(w) denote ∇f(w) evaluated at
w = [w1, w2, . . . , wd]

T . Then ∀w, Θ = [θ1, θ2, . . . , θd]
T and a non-negative

constant vector L = [l1, l2, . . . , ld]
T and l′ = ||L||∞,

|f(Θ)− [f(w) + ḡ(w)T (Θ−w)]| ≤ 1

2

d∑
i=1

li(θi − wi)
2

3. (Variance bound assumption) E[g(w)] = ḡ(w) and for some
non-negative constant vector σ = [σ1, σ2, . . . , σd]

T ,

E[(g(w)i − ḡ(w)i)
2] ≤ σ2

i

4. Let n̄t = E[nt] and there exists a non-negative µ such that,

µ = max
t

ḡT
t n̄t
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Main Result

Theorem
Let T be the total number of iterations and learning rate γ = 1

l′
√
T
and f0 be

the initial objective value. Then,

E

[
1

T

T−1∑
t=0

||ḡt||2
]
≤

1
√
T

[
l′K(f0 − f∗) + ||σ||2 + β

]
+Kµ
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Comparisons

1. SGD has same asymptotic convergence rate of O
(

β√
T

)
as of our

approach.
2. TernGRAD provides probabilistic guarantee on convergence 9.
3. Error compensated DoubleSqueeze admits the same asymptotic

convergence rate of O
(

β√
T

)
10.

9Wen et al., ‘TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning’, NIPS, 2017.
10Tang et al., ‘DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression’, Arxiv, 2019.
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Challenges

Issues with LP-based CS recovery?
1. LP-based recovery algorithms are very slow→ Slower convergence.
2. Large number of constraints→ High computational complexity.

Way out?
→ Iterative methods for CS recovery.
Advantages:
Identical to the LP-based CS recovery while running dramatically faster.
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Iterative Hard Thresholding (IHT)

Restricted Isometry Property (RIP): Measurement matrix Φ̂ holds RIP for all
k-sparse signal x if,

(1− δk)||x||22 ≤ ||Φ̂x||22 ≤ (1 + δk)||x||22

Modified RIP: For Φ = Φ̂
1+δk

and βk = 1− 1−δk
1+δk

,

(1− βk)||x||22 ≤ ||Φx||22 ≤ ||x||22

Takeaway: Φ holds RIP for sparsity k if βk < 1.
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Iterative Hard Thresholding (IHT)

Algorithm Definition Setting x0 = 0 for iteration t = 0,

xt+1 = Hk[xt +ΦT (y −Φxt)]

where non-linear thresholding operator Hk(a) sets all but the largest k
elements to 0.
1. Convergence is guaranteed when Φ holds modified RIP.
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Main Results

1. Given noisy observation y = Φx+ e (x being k-sparse) and Φ

maintaining modified RIP by β3k < 1
8
, at t-th iteration we would obtain,

||x− xt||2 ≤ 2−t||xt||2 + 4||e||2

2. Maximum number of iterations t∗,

t∗ =

⌈
log2

||x||2
||e||2

⌉

with accuracy ||x− xt∗ ||2 ≤ 5||e||2.
3. Complexity: O(t ∗ L), where L denotes the complexity of applying Φ
and ΦT .
Issue?
→ Poor sparsity-undersampling tradeoff.
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Approximate Message Passing (AMP)

Recall: In IHT,

xt+1 = Hk(Φ
T zt + xt)

zt = y −Φxt

AMP: Exploiting belief propagation graphs,

xt+1 = Hk(Φ
T zt + xt)

zt = y −Φxt +
1

δ
zt−1 < H′

k(Φ
T zt−1 + xt−1) >

for a = [a(1), a(2), . . . , a(N)], < a >=
∑N

i=1
a(i)
N

and H′
k(s) =

∂
∂s
Hk(s).
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Extension to QCS

Recall: QCS can be modelled as y = Q(Φx) = Φx+ e.
Idea?
→ Consistency in measurement.
1. Minimize the loss function C defined as,

C(y, Q(Φx̂))
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Conclusions and Future Work

1. Combine compression and quantization→ Quantized compressive
sensing for gradient communication.
2. Convergence analysis for the proposed approach→ Same with the
asymptotic convergence rate of SGD: O( β√

T
).

3. In search of a new iterative QCS recovery algorithm→ Combining with
the idea of AMP.
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Sketched SGD

1. Form sketch of gradient S(gt) of size O( 1
ϵ
logN) to approximate

gradient gt .
2. Recovery of gradient ĝt from S(gt) fulfilling:

g2
i
− ϵ||g||22 ≤ ĝ2

i
≤ g2

i
+ ϵ||g||22 (1)

3. ϵ is small error.
4. Sketched SGD approximating top-k gradients.
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Complexity

1. OMP has complexity of O(nmk).
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