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background



Compressive Sensing (CS)

Original signal, xN×1
yM×1 = ΦM×NxN×1 yM×1 = ΦM×NΨN×N sN×1

Recovery of xN×1 from yM×1Recovered signal, x̂N×1

How to obtain the sparse solution of the linear system?
1. min ||s||0 subject to y = ΦΨs→ NP hard problem.
2. min ||s||1 subject to y = ΦΨs→ Solvable convex optimization problem leading
to the same solution with ℓ0 norm.

3



CS for Multiple Measurement Vectors

How to implement compressive sensing (CS) for J jointly sparse signals?

1. Naive Approach: Apply 1-D CS J times for J signals.
• Does not exploit temporal sparsity between signals.
• Recovery algorithm of complexity 1 O(MN) is performed J times. ←− Expensive
Computationally

1. Distributed CS Approach 2: Exploits temporal sparsity of J signals.
• Decompose the signal into common and innovation components:

D = KC +
∑J

j=1 Kj

• Recovery algorithm of complexity O(JM2N) is performed. ←− Expensive
Computationally

1H. Mohimani et. al., “A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm,” IEEE Transactions on Signal
Processing, vol. 57, pp. 289–301, Jan 2009.
2D. Baron et. al., “Distributed Compressive Sensing,” arxiv, 2009.
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challenges



Challenges

Challenges:

• Hardware implementation of measurement matrix (Φ).
• Computationally expensive recovery.

Goals:

• Easy to implement measurement matrix←− Deterministic matrix.
• Avoid computationally expensive recovery.
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proposed approach



Deterministic Sensing

• To ensure easy realisation deterministic sensing is adopted.
• Linear filtering-based DBBD deterministic matrix3 is used in this work.

Linear Filtering Block,
[1, 1, . . . , 1]

Decimation by
⌊

N
M

⌋ y
• A matrix representation of DBBD deterministic matrix forM = 4 and

N = 16.

Φ4×16 =

 [1111]

[1111]

[1111]

[1111]


3A. Ravelomanantsoa et. al., “Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm,” IEEE
Transactions on Instrumentation and Measurement, vol. 64, pp. 3405–3413, Dec 2015
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Compressed Domain Feature Preservation
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Figure: Compressed ECG signal at various compression levels. (a) Original signal, (b)
compression ratio = 50%, (c) compression ratio = 75%.
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quantifying feature preservation



Quality Evaluation Metrics

• Structural similarity←− Pearson’s correlation coefficient.
Structural similarity between two signals A and B: corr(A,B) =

cov(A,B)
σAσB

.

• Fiduciary Point Detection←− R-peak Detection.
Pan Tompkins QRS detection4 algorithm.

4J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Transactions on Biomedical
Engineering, vol. 32, no. 3, pp. 230-236, March 1985.
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Quality Evaluation Metrics

• Structural similarity←− Pearson’s correlation coefficient.
Structural similarity between two signals A and B: corr(A,B) =

cov(A,B)
σAσB

.

• Fiduciary Point Detection←− R-peak Detection.
Pan Tompkins QRS detection4 algorithm.

• How to evaluate the performance of the QRS detection algorithm?

4J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Transactions on Biomedical
Engineering, vol. 32, no. 3, pp. 230-236, March 1985.
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Quality Evaluation Metrics

• Sensitivity (Se): Se(%) = TP
TP+FN

× 100%

• Positive predictivity (P+): P+(%) = TP
TP+FP

× 100%

• F measure (F ): F (%) = 2×TP
2×TP+FN+FP

× 100%

• Detection Error Rate (DER): DER(%) = FP+FN
TP+TN+FP+FN

× 100%
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experimental validation



Results
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Figure: Structural similarity analysis at compression ratio = 50%
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Figure: Structural similarity analysis at compression ratio = 75%
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Figure: Structural similarity analysis at compression ratio = 87.5%
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Results
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Figure: Performance of R-peak detection on the compressed measurements for
compression ratio = 50%, 75% and 87.5%. (a) Sensitivity analysis, (b) Positive
predictivity analysis
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Results
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Figure: Performance of R-peak detection on the compressed measurements for
compression ratio = 50%, 75% and 87.5%. (a) F-measure and (b) DER analysis.
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conclusions & future works



Conclusions

• Deterministic compressive sensing approach is presented for
multi-channel ECG signal acquisition←− Easy to implement in hardware.
• Feature preserving DBBD sensing matrix is used←− Eliminating the need
for computationally expensive recovery.
• Structural similarity and R-peak detection is performed←− To quantify
compressed domain feature preservation.
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Future Works

• Study of effectiveness of the proposed compressive sensing-based
approach in presence of measurement artifacts.
• Study of measurement uncertainty associated with the approach.
• As an extension separation of fetus ECG from the mother’s ECG in the
compressed domain would be investigated.
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