DISTRIBUTED STOCHASTIC GRADIENT DESCENT WITH QUANTIZED COMPRESSIVE SENSING

Overview

e Millions of connected devices generating huge amount of unprocessed data.

e Distributed processing is adopted for training large scale machine learning
models.

e Sync-SGD is a preferred optimization technique [4].

e Gradient communication between the parameter server and the worker caus-
Ing bottleneck.

Way out: Gradient compression

Motivations

e Sparsity induced by RelLU activation function.
f(x) = max(0,z) — Forcingallxz <0to0

e 449 of operations performed in most of the modern DNNs, for example
AlexNet, GooglLeNet etc., are ineffective [3].
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Fig. 1: Average fraction of zero input neuron values in convolutional layer multiplication [3]

Key ldea: Use quantized compressive sensing to exploit the sparsity.

Compressive Sensing

e A sampling technique for signals which are sparse or compressible in some
Known basis [2].

e Measurement matrix ® ;. nr IS chosen to be a random matrix to obtain mea-
surement vector y 71 from signal xa 1 as,
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e Signal is recovered by solving LP optimization problem as follows:

X = argmin||x||; s.t. y = &x
X
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Quantized Compressive Sensing

e Quantization is modelled as as an additive measurement noise in quantized compres-
sive sensing [1]: vy = Q(Px) = Px + €
e Measurement noise n is bounded by the quantization interval A and the dimension of
: MA?
the compressed measurement (M): |e[|o </ =55~ = ¢
e Signal reconstructed by solving an optimization problem.

X = argmin||x||; s.t. [[y — Px|[o < e
X

e Reconstruction error ||X — x||o = ||n]|2 < 8

Vanilla Sync-SGD

e /K workers participating in a distributed learning to evaluate parameters w.

()

e Each worker computes its local gradients g, * and sends to the parameter server to

perform aggregation:
1 ZK (k)
gt = e £ g

e Model parameters are updated following: w;. 1 = w;—~g; and sent back to the workers.

Proposed Approach

e Use quantized compressive sensing to compress the sparse gradients.

e Quantized compressed measurement vectors y§k> are obtained for each worker (k).
k k
v = Q&g

: k
e Quantized compressed measurements yi ) are sent to the parameter server.

e At the parameter server the quantized compressed measurements are recovered to

(k)

obtain g,

(k)

e Parameter server performs gradient aggregation: g = % 2521 g,
e Parameters are updated following the update rule and sent back to each worker.
Wil = Wi — V8¢

Advantage: Quantization is performed on the compressed gradients lowering commu-
nication cost over standard gradient quantization approaches (where quantization is
performed directly on the gradients).

Convergence Analysis

e (Lower bound assumption) Yw and some constant f*, global objective
function f(w) > f~.

e (Smoothness assumption) Let g(w) denote Vf(w) evaluated at w =
Wy, wo, ..., wyll. Then Yw, ® = [#;,65,...,60,4]' and a non-negative con-
stant vector L = [l1, 15, ..., 1] and I’ = ||L]|so,

d
7(6) — [F(w) + &) (6 — Wil < 5 3" 1(6; — wy)?
1=1

e (Variance bound assumption) Stochastic gradient g(w) is an unbiased
estimate having bounded coordinate variance E|g(w)| = g(w) and,

El(g™(w), — g(w),)?] < o?

for some non-negative constant vector o = [0, 09, ..., 0,4 .

e Let n; = E[ny| and there exists a non-negative p such that (1 < 1),
|| < pl &1l

Theorem 1. Let 7" be the total number of iterations and learning rate v =
L _ and fo be the initial objective value. Then,
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Comparison

e SGD has same asymptotic convergence rate of O(\%) as of our ap-
proach.
e TernGRAD provided probabilistic guarantee on convergence [5].

e Error compensated DoubleSqueeze admits the same asymptotic conver-

el
gence rate of O (ﬁ) .
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