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Overview

• Millions of connected devices generating huge amount of unprocessed data.

• Distributed processing is adopted for training large scale machine learning
models.

• Sync-SGD is a preferred optimization technique [4].

• Gradient communication between the parameter server and the worker caus-
ing bottleneck.

Way out: Gradient compression

Motivations

• Sparsity induced by ReLU activation function.

f (x) = max(0, x) → Forcing all x < 0 to 0

• 44% of operations performed in most of the modern DNNs, for example
AlexNet, GoogLeNet etc., are ineffective [3].

Fig. 1: Average fraction of zero input neuron values in convolutional layer multiplication [3]

Key Idea: Use quantized compressive sensing to exploit the sparsity.

Compressive Sensing

• A sampling technique for signals which are sparse or compressible in some
known basis [2].

• Measurement matrix ΦM×N is chosen to be a random matrix to obtain mea-
surement vector yM×1 from signal xN×1 as,

yM×1 = ΦM×NxN×1

• Signal is recovered by solving LP optimization problem as follows:

x̂ = argmin
x
‖x‖1 s.t. y = Φx

Quantized Compressive Sensing

• Quantization is modelled as as an additive measurement noise in quantized compres-
sive sensing [1]: y = Q(Φx) = Φx + e

• Measurement noise n is bounded by the quantization interval ∆ and the dimension of

the compressed measurement (M ): ||e||2 ≤
√
M∆2

12 = ε

• Signal reconstructed by solving an optimization problem.

x̂ = argmin
x
‖x‖1 s.t. ‖y − Φx‖2 ≤ ε

• Reconstruction error ||x̂− x||2 = ||n||2 ≤ β

Vanilla Sync-SGD

• K workers participating in a distributed learning to evaluate parameters w.

• Each worker computes its local gradients g
(k)
t and sends to the parameter server to

perform aggregation:

gt =
1

K

K∑
k=1

g
(k)
t

• Model parameters are updated following: wt+1 = wt−γgt and sent back to the workers.

Proposed Approach

• Use quantized compressive sensing to compress the sparse gradients.

• Quantized compressed measurement vectors y
(k)
t are obtained for each worker (k).

y
(k)
t = Q(Φg

(k)
t )

• Quantized compressed measurements y
(k)
t are sent to the parameter server.

• At the parameter server the quantized compressed measurements are recovered to
obtain g̃

(k)
t .

• Parameter server performs gradient aggregation: g̃t = 1
K

∑K
k=1 g̃

(k)
t .

• Parameters are updated following the update rule and sent back to each worker.

wt+1 = wt − γg̃t

Advantage: Quantization is performed on the compressed gradients lowering commu-
nication cost over standard gradient quantization approaches (where quantization is
performed directly on the gradients).

Convergence Analysis

• (Lower bound assumption) ∀w and some constant f∗, global objective
function f (w) > f∗.

• (Smoothness assumption) Let ḡ(w) denote ∇f(w) evaluated at w =
[w1, w2, . . . , wd]

T . Then ∀w, Θ = [θ1, θ2, . . . , θd]
T and a non-negative con-

stant vector L = [l1, l2, . . . , ld]
T and l′ = ||L||∞,

|f (Θ)− [f (w) + ḡ(w)T (Θ−w)]| ≤ 1

2

d∑
i=1

li(θi − wi)2

• (Variance bound assumption) Stochastic gradient g(w) is an unbiased
estimate having bounded coordinate variance E[g(w)] = ḡ(w) and,

E[(g(k)(w)i − ḡ(w)i)
2] ≤ σ2

i

for some non-negative constant vector σ = [σ1, σ2, . . . , σd]
T .

• Let n̄t = E[nt] and there exists a non-negative µ such that (µ < 1),

||n̄t|| ≤ µ||ḡt||

Theorem 1. Let T be the total number of iterations and learning rate γ =
1

l′K
√
T

and f0 be the initial objective value. Then,

E

[
1

T

T−1∑
t=0

||ḡt||2
]
≤ 1√

T

[
l′K2(f0 − f∗) + ||σ||2 + β

1− µ

]

Comparison

• SGD has same asymptotic convergence rate of O

(
β√
T

)
as of our ap-

proach.

• TernGRAD provided probabilistic guarantee on convergence [5].

• Error compensated DoubleSqueeze admits the same asymptotic conver-

gence rate of O

(
β√
T

)
.
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