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Motivation

3-D ground target localization with biased angle-only sensor.
Two key sources of uncertainties:

Measurement bias, i.e. bias in the elevation and bearing angles.
Terrain uncertainty.

Ground target can be:
Stationary.
Moving with a nearly constant velocity (CV).
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Terrain Uncertainty

How to make the 3-D localization problem observable?
The target height from the sea level is available.
Height information is obtained from a Digital Terrain Elevation
Database (DTED).

Height information obtained from DTED has uncertainty.
Neglecting terrain uncertainty leads to:

Localization error.
Optimistic performance bounds.
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Localization using Angle-only Sensor 1

Tracking a ground target in 3-D using angle-only airborne sensor.
Ground target height from the sea level is assumed to be known
with terrain uncertainty.

Sources of uncertainties: terrain uncertainty and measurement
bias.

Bias estimation using a target of opportunity.
Optimal number of target of opportunity.
Optimal sensor trajectory.

Target localization using bias compensated non-linear filtering.
Evaluation of biased posterior Cramer Rao Lower Bound
(PCRLB) and estimator performance evaluation.

1D. Mitra, A. Balachandran, R. Tharmarasa, “Ground Target Tracking Using an
Airborne Angle-Only Sensor with Terrain Uncertainty and Sensor Biases,” Sensors,
22, no. 2:509, January 2022, pp. 1-26.
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Proposed Modifications

Challenges:
Presence of measurement bias causes delay in error
convergence.
Estimation accuracy is low.

Proposed solution:
Range sensor addition to improve localization accuracy.

Error convergence is attained faster.
Platform trajectory optimization for estimation.
Ground target localization while handling biases.

Bias compensation.
Bias estimation.
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Problem Overview

Localizing a ground target using two airborne sensor platforms.
Ground target has terrain uncertainty.
Platform 1 contains biased angle-only sensors.
Platform 2 contains unbiased range sensor.

Optimal platform trajectory based on performance bound.

Estimation, Tracking and Fusion Laboratory (ETFLab) 6 / 28



Measurement Model (for Platform 1)

Biased angle-only measurements θk ∈ [−π, π] and γk ∈ [−π
2 ,

π
2 ].

From 3-D geometry,

θtrue
k = tan−1 (yt

k − yp1
k , xt

k − xp1
k

)
(1)

γ true
k = tan−1

(√(
xt
k − xp1

k

)2
+

(
yt
k − yp1

k

)2
, ztk − zp1k

)
(2)

True height of the ground target from the sea level is ztk.
Assumed height containing terrain uncertainty zg = zt1 + z̃t.

Error associated to terrain uncertainty z̃t ∼ N (z̃t; 0, σ2
zt).

Measurement model for platform 1,

zk = ha(x
t
k,x

p1
k ) + bk +wk (3)

Bias vector bk = [θbk , γbk ].
ha(x

t
k,x

p1
k ) = [θtrue

k , γtrue
k ]T .

Measurement noise wk ∼ N (wk; 0,Rk), where Rk = diag(σ2
θ , σ

2
γ).
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Measurement Model (for Platform 2)

Unbiased range measurements,

rk =

√
(xtk − xp2k )2 + (ytk − yp2k )2 + (ztk − zp2k )2 (4)

Measurement model for platform 2,

zrk = hr(x
t
k,x

p2
k ) +wr

k (5)

hr(x
t
k,x

p2
k ) = [rk].

Measurement noise wr
k is a zero-mean Gaussian with variance

σ2
rk

.
Range measurements might not be available for all time-steps.
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Bias Compensated Localization

Bias compensated measurements

zck = ha(x
t
k,x

p1
k ) + bk − bprior

k +wc
k (6)

Bias prior bprior
k = [θprior

bk
, γprior

bk
].

Measurement noise wc
k ∼ N (wc

k; 0,R
c
k).

Bias compensated covariance
Rc

k = diag((σ2
θ + σ2

θprior
bk

), (σ2
γ + σ2

γprior
bk

)).

Considering terrain uncertainty (only for initialization)
R1 = diag

(
σ2
zt ,

(
σ2
θk

+ σ2
θb1

)
,
(
σ2
γk

+ σ2
γb1

))
Unscented Kalman Filter (UKF) is used for non-linear filtering with zero point
initialization.
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Joint Estimation of Target and Bias States

No bias compensation is performed.
Bias states are stacked with the target state.

Joint state initialization as x1 = [x1, 0, y1, 0, zg, θ
prior
bk

, γprior
bk

].
For stationary target x1 = [x1, y1, zg, θ

prior
bk

, γprior
bk

].
θprior
bk

and γprior
bk

can be zero.

UKF is used for non-linear filtering.
Information on terrain uncertainty not used after initialization.
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Performance Bound

Posterior Cramer Rao Lower Bound (PCRLB) is used.
With ZK = [z1, z2, . . . , zK ],

Ck = E
[
(x̂t

k(zk)− xt
k)(x̂

t
k(zk)− xt

k)
T
]
≥ J−1

k (7)

Fisher Information Matrix (FIM) or Jk,

Jk+1 =
(
FkJ

−1
k FT

k +Qk

)−1

+ Jz(k + 1) (8)

Measurement contribution Jz(k) = E
[
qkH

T
kR

−1
k Hk

]
.

For angle-only sensors Hk =
∂ha(x

t
k,x

p1
k )

xt
k

.

For range-only sensor Hk =
∂hr(x

t
k,x

p2
k )

xt
k

For range and angle measurements Jz(k) = Ja
z(k) + Jr

z(k).

Jz(k) = Ja
z(k) or Jz(k) = Jr

z(k), based on the availability of the
sensor.
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Range Sensor Fusion (1)

(a) Localization affected by θbk (b) Range sensor fusion with θbk

Figure: Target state and the localization estimates in presence of biases in
the angle measurements with µ = 0.
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Range Sensor Fusion (2)

(a) Localization affected by γbk (b) Range sensor fusion with γbk

Figure: Target state and the localization estimates in presence of biases in
the angle measurements with µ = 0.
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Optimal Trajectory Planning (1)

(a) Range sensor fusion with γbk (b) Range sensor fusion with θbk

Figure: x-y plane projection of stationary target state and the localization
estimates with sensor fusion and µ > 0.
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Optimal Trajectory Planning (1)

Goal: Finding optimal µ by optimizing PCRLB.
Measurement contribution of the FIM,

Jz(k) = Ja
z(k) + Jr

z(k) (9)

Sampling rate of the range sensor might be different from the
angle-only sensors.
Jr
z(k) might not be available for all the time-steps.

The optimization problem is formulated as,

argmin
µ

K∑
k=1

Tr[J−1
k ] (10)

s.t. µ ∈ [0, 360◦)
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Key Takeaways

The bias in the angle-only measurements are smaller −→
Choose µ = 0.
For larger bias in the angle-only measurements −→ Increase
separation between the platforms.
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Simulation Results (1)
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(a) Stationary ground target
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(b) Moving ground target

Figure: Comparison of the RMSE of the proposed approach with an
approach that ignores the terrain uncertainty, when the σzt = 30 m.
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Simulation Results (2)
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Figure: Ground target localization errors for various terrain uncertainties using
range sensor fusion for the platform separation angle µ = 0◦.

Higher terrain uncertainty leads to higher localization error.
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Simulation Results (3)
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Figure: Comparison of errors in target state localization using range sensor fusion
for various degrees of separations between airborne platforms.

µ = 90◦ leads to faster reduction in RMSE for localization.
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Simulation Results (4)
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(a) Bearing bias estimation errors
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(b) Elevation bias estimation errors

Figure: Comparison of bias estimation errors for various angles of separation.

µ = 90◦ is optimal for bearing bias estimation.
µ = 0◦ is optimal for elevation bias estimation.
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Simulation Results (5)
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(a) PCRLB comparison at time = 5 s

0 20 40 60 80 100

Time (in sec)

0

50

100

150

200

250

300

350

400

R
M

S
E

 (
in

 m
)

Angle and Range sensors for  =0o

Angle and Range sensors for  =30o

Angle and Range sensors for  =60o

Angle and Range sensors for  =90o

Angle and Range sensors for  =120o

Angle and Range sensors for  =150o

Angle and Range sensors for  =180o

(b) Target localization error

Figure: Comparison of ground target localization error for various µ with σθb = 1◦,
σγb = 1◦ and σzt = 30m.

Impact of the higher µ on reducing localization error fades away
for small biases.
Terrain uncertainty primarily impacts localization accuracy −→
Increasing µ has no effect in reducing RMSE.
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Conclusions

Localization of a ground target using,
Biased angle-only sensors.
Additional range sensor −→ Improves error convergence.

Uncertainties present −→
Measurement bias uncertainty.
Terrain uncertainty.

Proposed localization approaches −→
Use bias compensated measurements with inflated initial
covariance.
Joint estimation of the bias and the target states. (Recommended
method, if time is not a constraint)

PCRLB based optimal platform trajectory planning −→
Choose 90◦ separation for higher bearing biases.
Choose 0◦ separation for lower bearing biases.
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Backup Slides
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System Model

Ground target state xt
k = [xtk, ẋ

t
k, y

t
k, ẏ

t
k, z

t
k].

State evolution of ground target,

xt
k+1 = Fkx

t
k +Gkvk (11)

Process noise vk ∼ N (vk; 0, σ
2
v).

For a stationary ground target ẋt
k = ẏtk = 0 and Fk = I.

Platform 1 and 2 with states xp1
k = [xp1k , ẋp1k , yp1k , ẏp1k , zp1k ] and

xp2
k = [xp2k , ẋp2k , yp2k , ẏp2k , zp2k ].

Platforms follow a ‘coordinated turn model’.
Ground target remains at the centre of the circle.
Circle radius R and the constant speed v are known a-priori.
Turn rate ω = v

R rad/s.
Angle of separation is µ.
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Simulation Parameters

Platform radius (R) 3000 m
Platform speed (v) 50 m/s
Platform height (zp11 ) 700 m
Standard deviation of terrain uncertainty (σzt) 30 m
Range measurement standard deviation (σrk ) 5 m
Bearing measurement standard deviation (σθk ) 0.4◦

Elevation measurement standard deviation (σγk ) 0.2◦

Sampling time of the angle-only sensor (T1) 1 s
Sampling time of the range sensor (T2) 5 s
Mean bearing bias (θbk ) 0◦

Bearing bias standard deviation (σθbk ) 5◦

Mean elevation bias (γbk ) 0◦

Elevation bias standard deviation (σγbk ) 1◦
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Simulation Results (Backup)

Figure: Target own-ship geometry along with the estimates for the airborne
platform separation angle µ = 0◦.
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Simulation Results (Backup)
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Figure: Ground target localization error using range sensor fusion for the
platform separation angle µ = 0◦ and σzt = 30m.
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Simulation Results (Backup)
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(a) Bearing bias estimation
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(b) Elevation bias estimation

Figure: Bias estimation errors for the airborne platform separation angle
µ = 0◦.
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