Carleton University

Investigation of Kronecker-based Recovery in Compressive Sensing ¹

Dipayan Mitra, M.A.Sc. Candidate dipayan.mitra@carleton.ca Supervisor: Prof. Sreeraman Rajan

¹Author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) & Carleton University.

Original signal, $\mathbf{x}_{N \times 1}$

$$(1 - \delta_k) \le \frac{\|\mathbf{\Phi}\mathbf{x}\|_2^2}{\|\mathbf{s}\|_2^2} \le (1 + \delta_k) \tag{1}$$

² E. J. Candès, "Theory of Signals/Mathematical Analysis," Comptes rendus - Mathematique, vol. 346, no. 9-10, pp. 589–592, 2008.

$$(1 - \delta_k) \le \frac{\|\mathbf{\Phi}\mathbf{x}\|_2^2}{\|\mathbf{s}\|_2^2} \le (1 + \delta_k) \tag{1}$$

No polynomial time algorithm exists to verify RIP

² E. J. Candès, "Theory of Signals/Mathematical Analysis," Comptes rendus - Mathematique, vol. 346, no. 9-10, pp. 589–592, 2008.

$$(1 - \delta_k) \le \frac{\|\mathbf{\Phi}\mathbf{x}\|_2^2}{\|\mathbf{s}\|_2^2} \le (1 + \delta_k) \tag{1}$$

No polynomial time algorithm exists to verify $RIP \rightarrow Complex$ to check RIP in practical cases.

² E. J. Candès, "Theory of Signals/Mathematical Analysis," Comptes rendus - Mathematique, vol. 346, no. 9-10, pp. 589–592, 2008.

$$(1 - \delta_k) \le \frac{\|\mathbf{\Phi}\mathbf{x}\|_2^2}{\|\mathbf{s}\|_2^2} \le (1 + \delta_k) \tag{1}$$

No polynomial time algorithm exists to verify $RIP \rightarrow Complex$ to check RIP in practical cases.

Does an <u>alternative</u> exist?

²E. J. Candès, "Theory of Signals/Mathematical Analysis," Comptes rendus - Mathematique, vol. 346, no. 9-10, pp. 589–592, 2008.

• x can not have sparse representation in both Φ and Ψ ³.

³M. Elad, "Sparse and Redundant Representations: From Theory to Applications," in *Signal and Image Processing*, Springer Publishing Company, Incorporated, 1st ed., 2010.

- x can not have sparse representation in both Φ and Ψ ³.
- Hence, Φ needs to be incoherent with Ψ .

³M. Elad, "Sparse and Redundant Representations: From Theory to Applications," in *Signal and Image Processing*, Springer Publishing Company, Incorporated, 1st ed., 2010.

- x can not have sparse representation in both Φ and Ψ ³.
- Hence, Φ needs to be incoherent with Ψ .
- Mutual coherence (μ) between Φ and Ψ is chosen to be an alternative to RIP ⁴.

$$\mu(\mathbf{\Phi}, \mathbf{\Psi}) = \max_{i \neq j} | < \Phi_i, \Psi_j > |$$
(2)

³M. Elad, "Sparse and Redundant Representations: From Theory to Applications," in *Signal and Image Processing*, Springer Publishing Company, Incorporated, 1st ed., 2010.

⁴D. L. Donoho and X. Huo, "Uncertainty principles and ideal atomic decomposition," IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2845-2862, 2001.

- x can not have sparse representation in both Φ and Ψ ³.
- Hence, Φ needs to be incoherent with Ψ .
- Mutual coherence (μ) between Φ and Ψ is chosen to be an alternative to RIP ⁴.

$$\mu(\mathbf{\Phi}, \mathbf{\Psi}) = \max_{i \neq j} | < \Phi_i, \Psi_j > |$$
(2)

• Lower the μ , better the reconstruction.

³M. Elad, "Sparse and Redundant Representations: From Theory to Applications," in *Signal and Image Processing*, Springer Publishing Company, Incorporated, 1st ed., 2010.

⁴D. L. Donoho and X. Huo, "Uncertainty principles and ideal atomic decomposition," IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2845-2862, 2001.

Random Matrix \rightarrow Gaussian or Normal, Bernoulli etc. Deterministic matrix \rightarrow DBBD, Toeplitz-structured matrix, second-order Reed Muller code based matrix etc.

Random matrices \rightarrow

Random matrices \rightarrow

• Difficult to implement in hardware.

Random matrices \rightarrow

- Difficult to implement in hardware.
- Encodes the measurements \rightarrow Privacy preservation for wireless transmission of measurements.

Random matrices \rightarrow

- Difficult to implement in hardware.
- \bullet Encodes the measurements \to Privacy preservation for wireless transmission of measurements.

Deterministic matrices \rightarrow

Random matrices \rightarrow

- Difficult to implement in hardware.
- \bullet Encodes the measurements \to Privacy preservation for wireless transmission of measurements.

Deterministic matrices \rightarrow

• Easier to implement in hardware.

Random matrices \rightarrow

- Difficult to implement in hardware.
- \bullet Encodes the measurements \rightarrow Privacy preservation for wireless transmission of measurements.

Deterministic matrices \rightarrow

- Easier to implement in hardware.
- Morphology is preserved in the compressed domain.

Random matrices \rightarrow

- Difficult to implement in hardware.
- Encodes the measurements \rightarrow Privacy preservation for wireless transmission of measurements.

Deterministic matrices \rightarrow

- Easier to implement in hardware.
- Morphology is preserved in the compressed domain.
- Reconstruction quality improves compared to the random matrices for a fixed Ψ .

 \checkmark min $||\mathbf{s}||_0$ subject to $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{s} \rightarrow$ Non-convex optimization problem, NP hard to solve.

 \checkmark min $||\mathbf{s}||_0$ subject to $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{s} \rightarrow$ Non-convex optimization problem, NP hard to solve.

 \checkmark min||s||1 subject to $\mathbf{y}=\Phi\Psi\mathbf{s}\rightarrow$ Solvable convex optimization problem leading to same solution with ℓ_0 norm.

Mitra

 \checkmark min $||\mathbf{s}||_0$ subject to $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{s} \rightarrow$ Non-convex optimization problem, NP hard to solve.

 $\checkmark \min||\mathbf{s}||_1$ subject to $\mathbf{y} = \Phi \Psi \mathbf{s} \rightarrow \text{Solvable}$ convex optimization problem leading to same solution with ℓ_0 norm.

Figure: Block diagram representation of sparse reconstruction

CS-based Recovery

How to find the sparse solution to the linear system?

 \checkmark min $||\mathbf{s}||_0$ subject to $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{s} \rightarrow$ Non-convex optimization problem, NP hard to solve.

 \checkmark min $||\mathbf{s}||_1$ subject to $\mathbf{y} = \mathbf{\Phi} \Psi \mathbf{s} \rightarrow$ Solvable convex optimization problem leading to same solution with ℓ_0 norm.

Figure: Block diagram representation of sparse reconstruction

$$\mathbf{s}_{N\times 1} = \Re(\mathbf{y}_{M\times 1}, \mathbf{\Phi}_{M\times N}, \mathbf{\Psi}_{N\times N})$$

Carleton University

6/47 Mitra

 $\mathbf{X}_{N\times 1}$

7/47

$$\mathbf{X}_{N\times 1} \,$$
 (where $N=N'\times p)$

 $\widetilde{\mathbf{X}_{N'\times 1}}$

p smaller segments

1. Generation of smaller Φ

1. Generation of smaller $\Phi \rightarrow$ Lesser matrix multiplication leading to easier hardware implementation.

1. Generation of smaller $\Phi \rightarrow$ Lesser matrix multiplication leading to easier hardware implementation.

2. Smaller segments of signals transmitted wirelessly to remote systems for 'processing on demand'.

1. Generation of smaller $\Phi \rightarrow$ Lesser matrix multiplication leading to easier hardware implementation.

2. Smaller segments of signals transmitted wirelessly to remote systems for 'processing on demand'.

Applications:

Advantages:

1. Generation of smaller $\Phi \rightarrow$ Lesser matrix multiplication leading to easier hardware implementation.

2. Smaller segments of signals transmitted wirelessly to remote systems for 'processing on demand'.

Applications:

1. Continuous bio-signal (e.g. ECG) monitoring using 'resource constraint' wearable devices.

Advantages:

1. Generation of smaller $\Phi \rightarrow$ Lesser matrix multiplication leading to easier hardware implementation.

2. Smaller segments of signals transmitted wirelessly to remote systems for 'processing on demand'.

Applications:

1. Continuous bio-signal (e.g. ECG) monitoring using 'resource constraint' wearable devices.

2. Smaller Φ enables segmented column/row-based sensing of larger images.

$\mathbf{y}_{M \times 1}$ (where $M = M' \times p$)

$\underbrace{\mathbf{y}_{M'\times 1}}_{M'\times 1} \underbrace{\mathbf{y}_{M'\times 1}}_{M'\times 1}$	p smaller segments	$\mathbf{y}_{M' \times 1}$
---	--------------------	----------------------------

1. Performing recovery $p \text{ times} \rightarrow \text{Computationally expensive.}$

- 1. Performing recovery $p \ {\sf times} \to {\sf Computationally}$ expensive.
- 2. Degradation in reconstruction quality caused by segmentation.

Challenges

- 1. Performing recovery $p \text{ times} \rightarrow \text{Computationally expensive.}$
- 2. Degradation in reconstruction quality caused by segmentation.

Figure: Reconstructed signal quality degradation caused by segmentation.

Question?

Concatenate *p* individual segments of $\mathbf{y} \rightarrow \text{Form } \mathbf{y}_{M \times 1} \rightarrow$ Perform recovery once.

Question?

Concatenate *p* individual segments of $\mathbf{y} \to \text{Form } \mathbf{y}_{M \times 1} \to$ Perform recovery once.

Issue

 $\Phi_{M' \times N'}$ constructed during measurement $\rightarrow \Phi_{M \times N}$ can't be reconstructed!

Question?

Concatenate *p* individual segments of $\mathbf{y} \to \text{Form } \mathbf{y}_{M \times 1} \to$ Perform recovery once.

Issue

 $\Phi_{M' \times N'}$ constructed during measurement $\rightarrow \Phi_{M \times N}$ can't be reconstructed!

Solution?

 $\Phi_{M' \times N'}$ can be expanded to form $\Phi_{M \times N}$.

$\hat{\mathbf{\Phi}}_{M imes N}$

$$\hat{\mathbf{\Phi}}_{M\times N} = \mathbf{I}_{p\times p} \otimes \mathbf{\Phi}_{M'\times N'}$$

$$\hat{\mathbf{\Phi}}_{M imes N} = \mathbf{I}_{p imes p} \otimes \mathbf{\Phi}_{M' imes N'} = egin{bmatrix} \mathbf{\Phi} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{\Phi} & \dots & \mathbf{0} \\ & & \ddots & \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{\Phi} \end{bmatrix}$$

$\hat{\mathbf{\Psi}}_{N imes N}$

$$\hat{\boldsymbol{\Psi}}_{N\times N} = \mathbf{I}_{p\times p} \otimes \boldsymbol{\Psi}_{N'\times N'}$$

$$\hat{\mathbf{\Psi}}_{N imes N} = \mathbf{I}_{p imes p} \otimes \mathbf{\Psi}_{N' imes N'} = \left[egin{array}{ccccc} \mathbf{\Psi} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{\Psi} & \dots & \mathbf{0} \\ & & \ddots & \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{\Psi} \end{array}
ight]$$

$$\mathbf{s}_{N \times 1} = \Re(\mathbf{y}_{M \times 1}, \hat{\mathbf{\Phi}}_{M \times N}, \hat{\mathbf{\Psi}}_{N \times N})$$

Advantage

Computationally expensive recovery algorithm performs once, not p times.

Advantage

Computationally expensive recovery algorithm performs once, not p times.

Issue

Quality degradation not addressed.

$$oldsymbol{\Psi}'_{N imes N} = \left[egin{array}{cccc} oldsymbol{\Psi}'_{1,1} & oldsymbol{\Psi}'_{1,2} & \ldots & oldsymbol{\Psi}'_{1,p} \ oldsymbol{\Psi}'_{2,1} & oldsymbol{\Psi}'_{2,2} & \ldots & oldsymbol{\Psi}'_{2,p} \ & & \ddots & \ oldsymbol{\Psi}'_{p,1} & oldsymbol{\Psi}'_{p,2} & \ldots & oldsymbol{\Psi}'_{p,p} \end{array}
ight]$$

$$\mathbf{s}_{N \times 1} = \Re(\mathbf{y}_{M \times 1}, \hat{\mathbf{\Phi}}_{M \times N}, \mathbf{\Psi}'_{N \times N})$$

$$\mathbf{s}_{N imes 1} = \Re(\mathbf{y}_{M imes 1}, \hat{\mathbf{\Phi}}_{M imes N}, \mathbf{\Psi}'_{N imes N})$$

$$\uparrow$$
Remains unchanged

Regenerated from the same basis

Let us consider the resultant Kronecker-based sparsifying matrix $\hat{\Psi}_{N \times N} = \mathbf{I}_{p \times p} \otimes \Psi_{N' \times N'}$ is of size $N \times N$. If the modified sparsifying basis $\Psi'_{N \times N}$ is regenerated from the same basis then,

$$\mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\hat{\Psi}}_{N\times N}) \geqslant \mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\Psi}'_{N\times N})$$

Let us consider the resultant Kronecker-based sparsifying matrix $\hat{\Psi}_{N \times N} = \mathbf{I}_{p \times p} \otimes \Psi_{N' \times N'}$ is of size $N \times N$. If the modified sparsifying basis $\Psi'_{N \times N}$ is regenerated from the same basis then,

$$\mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\hat{\Psi}}_{N\times N}) \ge \mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\Psi}'_{N\times N})$$

Advantages:

Let us consider the resultant Kronecker-based sparsifying matrix $\hat{\Psi}_{N \times N} = \mathbf{I}_{p \times p} \otimes \Psi_{N' \times N'}$ is of size $N \times N$. If the modified sparsifying basis $\Psi'_{N \times N}$ is regenerated from the same basis then,

$$\mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\hat{\Psi}}_{N\times N}) \ge \mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\Psi}'_{N\times N})$$

Advantages:

1. Reconstruction quality improves.

Let us consider the resultant Kronecker-based sparsifying matrix $\hat{\Psi}_{N \times N} = \mathbf{I}_{p \times p} \otimes \Psi_{N' \times N'}$ is of size $N \times N$. If the modified sparsifying basis $\Psi'_{N \times N}$ is regenerated from the same basis then,

$$\mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\hat{\Psi}}_{N\times N}) \geqslant \mu(\mathbf{\hat{\Phi}}_{M\times N},\mathbf{\Psi}'_{N\times N})$$

Advantages:

- 1. Reconstruction quality improves.
- 2. Recovery is performed once, not *p* times.

(a) Reconstructed signal 5 with random matrix (Normal distribution) at CR = 50%

 $^5 ``{\rm MIT-BIH\ Arrhythmia\ Database.''\ Available:\ https://www.physionet.org/physiobank/database/mitdb/}$

• To ensure easy realisation deterministic sensing is adopted.

- To ensure easy realisation deterministic sensing is adopted.
- Linear filtering-based DBBD ⁶ deterministic matrix is used in this work.

⁶A. Ravelomanantsoa, H. Rabah and A. Rouane, "Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm," *IEEE Transactions on Instrumentation and Measurement*, vol. 64, pp. 3405–3413, Dec 2015

- To ensure easy realisation deterministic sensing is adopted.
- Linear filtering-based DBBD ⁶ deterministic matrix is used in this work.

• A matrix representation of DBBD deterministic matrix for M = 4 and N = 16.

$$\mathbf{\Phi}_{4\times 16} = \begin{bmatrix} 11111 & & & \\ & 11111 & & \\ & & 11111 & \\ & & & 11111 \end{bmatrix}$$

⁶A. Ravelomanantsoa, H. Rabah and A. Rouane, "Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm," *IEEE Transactions on Instrumentation and Measurement*, vol. 64, pp. 3405–3413, Dec 2015

✓ DBBD deterministic sensing matrix needs no multiplication.

✓ DBBD deterministic sensing matrix needs no multiplication.

 $\checkmark\,$ DBBD matrix preserves morphology in the compressed domain.

✓ DBBD deterministic sensing matrix needs no multiplication.

 $\checkmark\,$ DBBD matrix preserves morphology in the compressed domain.

 \checkmark Enables signal processing in the compressed domain.

Figure: Reconstructed signal with DBBD deterministic matrix at CR = 50%

Figure: Comparison of signal quality using random and deterministic matrices at CR = 50%

Statistical Parameter					SNR (dB)			
	Biorthogonal	Coiflets	Daubechies	DCT	Haar	Discrete Meyer	Reverse Biorthogonal	Symlets
Minimum	5.31	21.69	17.45	35.17	20.79	31.19	12.46	17.45
Maximum	26.61	23.65	26.76	35.17	20.79	31.19	27.00	36.62
Median	21.96	22.90	23.20	35.17	20.79	31.19	23.08	21.74

Table: Statistical analysis of recovery performance using modified Kronecker-based technique: CR = 50\%, $\pmb{\Phi}$ = DBBD

<i>т</i>	Ψ		Stan	dard		Modified			
Ψ.		SNR	RMS	QS	MAX	SNR	RMS	QS	MAX
DBBD	DCT	34.38	1.02	1.4	5.85	35.17	1.12	1.48	4.03
Bernoulli Random	DCT	17.56	7.04	0.18	55.67	20.07	9.87	0.24	30.63
Matrix									
Gaussian Random	DCT	17.04	7.68	0.16	57.26	19.37	10.62	0.23	36.82
Matrix									

Table: Performance analysis for various measurement matrices at CR = 50%

Figure: Comparison between different decomposition levels of different wavelets at CR = 50% with Φ =DBBD: (a) Using modified Kronecker-based technique, (b) Using standard Kronecker-based technique.

23/47

Carleton University

24/47

Mitra

Figure: Visual representation of ECG signals in presence of -15 dB correlated noise using Φ = DBBD & Ψ = Coif5 at CR = 75%.

Carleton University

 \checkmark Improvement is observed for both random and deterministic measurements.

 \checkmark Improvement is observed for both random and deterministic measurements.

 \checkmark Better signal quality is attained by using deterministic measurement matrix.

 \checkmark Improvement is observed for both random and deterministic measurements.

 \checkmark Better signal quality is attained by using deterministic measurement matrix.

 \checkmark Wavelet decomposition level does not have impact on signal quality.

 \checkmark Improvement is observed for both random and deterministic measurements.

 \checkmark Better signal quality is attained by using deterministic measurement matrix.

 \checkmark Wavelet decomposition level does not have impact on signal quality.

 \checkmark DCT serves as better Ψ for DBBD measurement matrix.

Discussions

✓ Improvement observed for various levels of compression (50%, 75%, 87.5%).

 \checkmark Improvement is observed for both random and deterministic measurements.

 \checkmark Better signal quality is attained by using deterministic measurement matrix.

 \checkmark Wavelet decomposition level does not have impact on signal quality.

 \checkmark DCT serves as better Ψ for DBBD measurement matrix.

 \checkmark Filtering effect of DBBD makes it suitable for measuring noisy signals.

Extension to 2-D Signals

Original 2D signal, $\mathbf{X}_{N \times N}$

Figure: Original Image⁷

 7 Image freely available in Image Processing Toolbox $^{\rm TM}$ of MathWorks $^{\ensuremath{\mathbb{R}}}$

– Segmentation →

(a) Reconstructed image using standard Kronecker-based technique

Mitra

(b) Reconstructed image using modified Kronecker-based technique

✓ Improvement observed for various levels of compression (50%, 75%, 87.5%, 93.75%).

 \checkmark Improvement is observed for both random and deterministic measurements.

✓ Improvement observed for various levels of compression (50%, 75%, 87.5%, 93.75%).

 \checkmark Improvement is observed for both random and deterministic measurements.

 \checkmark Better signal quality is attained by using deterministic measurement matrix.

 $X_{N \times N}$

 $X_{N \times N}$

 $Y_{M \times N}$

 $X_{N \times N}$

\checkmark Aspect ratio of the compressed image not preserved.

✓ Aspect ratio of the compressed image not preserved.
✓ Compressed domain classification becomes difficult.

✓ Aspect ratio of the compressed image not preserved. ✓ Compressed domain classification becomes difficult. ✓ Images stored in the compressed domain required storage space for an $M \times N$ matrix.

- ✓ Aspect ratio of the compressed image not preserved. ✓ Compressed domain classification becomes difficult. ✓ Images stored in the compressed domain required storage space for an $M \times N$ matrix.
- ✓ Measurement is required to be performed *N* times.

Original 2D signal, $\mathbf{X}_{N \times N}$

Original 2D signal,
$$\mathbf{X}_{N \times N}$$
 \rightarrow $\mathbf{Y}_{M \times M} = \mathbf{\Phi}_{M \times N} \mathbf{X}_{N \times N} \mathbf{\Phi}_{N \times M}^{T}$

Original 2D signal,
$$\mathbf{X}_{N \times N}$$

 $\mathbf{Y}_{M \times M} = \mathbf{\Phi}_{M \times N} \mathbf{X}_{N \times N} \mathbf{\Phi}_{N \times M}^{T}$ Recovery of $\mathbf{x}_{N \times 1}$ from $\mathbf{y}_{M \times 1}$ in a row and column wise fashion.

 $X_{N \times N}$

 $X_{N \times N}$

 $Y_{M\times M}$

 $X_{N \times N}$

Takeaways

 \checkmark Aspect ratio of the compressed image is preserved.

Takeaways

✓ Aspect ratio of the compressed image is preserved.

 \checkmark Images stored in the compressed domain requires lesser storage space ($M \times M$ matrix), compared to the column-wise technique.

Figure: Block diagram representation of modified 2-D CS recovery.

Infra-red Image (Without Noise)

(B)

Infra-red Image (With Noise⁷)

 $^{^{7}}$ White Gaussian noise of 0 mean and variance of 0.03 has been added.

Medium Resolution Image (Without Noise)

(C)

(D)

Medium Resolution Image (With Noise)

High Resolution Image (Without Noise)

High Resolution Image (With Noise)

 \checkmark Comparison of deterministic and random CS frameworks for signal quality improvement using modified Kronecker-based recovery technique.

 \checkmark Comparison of deterministic and random CS frameworks for signal quality improvement using modified Kronecker-based recovery technique.

✓ Development of a novel 2-D aspect ratio preserving CS technique and application of modified Kronecker-based recovery technique for 2-D signals.

 \checkmark Comparison of deterministic and random CS frameworks for signal quality improvement using modified Kronecker-based recovery technique.

✓ Development of a novel 2-D aspect ratio preserving CS technique and application of modified Kronecker-based recovery technique for 2-D signals.

✓ Demonstration of structure and morphology preservation through 2-D deterministic aspect ratio preserving CS → Signal processing in the compressed domain without the need for any recovery.

 \checkmark Comparison of deterministic and random CS frameworks for signal quality improvement using modified Kronecker-based recovery technique.

✓ Development of a novel 2-D aspect ratio preserving CS technique and application of modified Kronecker-based recovery technique for 2-D signals.

✓ Demonstration of structure and morphology preservation through 2-D deterministic aspect ratio preserving CS → Signal processing in the compressed domain without the need for any recovery.

✓ Investigation of Kronecker-based CS recovery technique for ECG signals using various sparsifying dictionaries, measurement matrices and noise levels for various compression levels.

Journal Publications

1. **D. Mitra**, H. Zanddizari and S. Rajan, "Investigation of Kronecker-based Recovery of Compressed ECG Measurements," under revision after first submission to *IEEE Transactions on Instrumentation and Measurement*, 2019.

2. H. Sadreazami, **D. Mitra**, S. Rajan and M. Bolic, "Fall Detection in Compressed Domain using Machine Learning," 2019. (Under Preparation).

Conference Publications

1. **D. Mitra**, S. Rajan and B. Balaji, "Deterministic compressive sensing approachfor compressed domain image analysis," *in 2019 IEEE Sensors Applications Symposium (SAS)*, France, March 2019.

2. **D. Mitra**, H. Zanddizari and S. Rajan, "Improvement of recovery in segmentation-based parallel compressive sensing," *in 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)*, pp. 501-506, Lousville, USA, Dec 2018.

3. **D. Mitra**, H. Zanddizari and S. Rajan, "Improvement of signal quality during recovery of compressively sensed ECG signals," *in 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA)*, pp. 1-5, Rome, Italy, June 2018.

\checkmark Hardware-based implementation of Kronecker-based recovery and 1-D signal acquisition.

- \checkmark Hardware-based implementation of Kronecker-based recovery and 1-D signal acquisition.
- \checkmark Development of theoretical bound for improvement using modified Kronecker-based technique.

43/47

 \checkmark Hardware-based implementation of Kronecker-based recovery and 1-D signal acquisition.

- \checkmark Development of theoretical bound for improvement using modified Kronecker-based technique.
- \checkmark Performance comparison between row & column wise sensing and column-wise sensing for 2-D signals.

 \checkmark Hardware-based implementation of Kronecker-based recovery and 1-D signal acquisition.

- ✓ Development of theoretical bound for improvement using modified Kronecker-based technique.
- \checkmark Performance comparison between row & column wise sensing and column-wise sensing for 2-D signals.
- \checkmark Implementation of modified Kronecker-based recovery technique in block-based 2D-CS.

 \checkmark Hardware-based implementation of Kronecker-based recovery and 1-D signal acquisition.

 \checkmark Development of theoretical bound for improvement using modified Kronecker-based technique.

 \checkmark Performance comparison between row & column wise sensing and column-wise sensing for 2-D signals.

✓ Implementation of modified Kronecker-based recovery technique in block-based 2D-CS.

✓ Possibility of Kronecker-based measurement for an extension to multi-dimensional signal processing (such as 3-D MRI).

Additional Results & Discussions

Figure: DCT domain representation of ECG signal

Figure: SSIM Analysis at CR = 93.75%

Figure: Reconstruction quality comparison between segmentation-based CS and ordinary CS methods.

47/47 M

Mitra

Carleton University