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ΦM×N for a k-sparse signal xN×1 should maintain Restricted
Isometry Property(RIP) 2 property for successful recovery.

(1− δk) ≤ ‖Φx‖22
‖s‖22

≤ (1 + δk) (1)

2
E. J. Candès, “Theory of Signals/Mathematical Analysis,” Comptes rendus - Mathematique, vol. 346, no. 9-10,

pp. 589–592, 2008.
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ΦM×N for a k-sparse signal xN×1 should maintain Restricted
Isometry Property(RIP) 2 property for successful recovery.

(1− δk) ≤ ‖Φx‖22
‖s‖22

≤ (1 + δk) (1)

No polynomial time algorithm exists to verify RIP→ Complex
to check RIP in practical cases.

Does an alternative exist?

2
E. J. Candès, “Theory of Signals/Mathematical Analysis,” Comptes rendus - Mathematique, vol. 346, no. 9-10,

pp. 589–592, 2008.
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• x can not have sparse representation in both Φ and Ψ 3.

3
M. Elad, “Sparse and Redundant Representations: From Theory to Applications,” in Signal and Image

Processing, Springer Publishing Company, Incorporated, 1st ed., 2010.
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• x can not have sparse representation in both Φ and Ψ 3.
• Hence, Φ needs to be incoherent with Ψ.
• Mutual coherence (µ) between Φ and Ψ is chosen to be an

alternative to RIP 4.

µ(Φ,Ψ) = max
i 6=j
| < Φi,Ψj > | (2)

3
M. Elad, “Sparse and Redundant Representations: From Theory to Applications,” in Signal and Image

Processing, Springer Publishing Company, Incorporated, 1st ed., 2010.
4

D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Transactions on
Information Theory, vol. 47, no. 7, pp. 2845-2862, 2001.
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• x can not have sparse representation in both Φ and Ψ 3.
• Hence, Φ needs to be incoherent with Ψ.
• Mutual coherence (µ) between Φ and Ψ is chosen to be an

alternative to RIP 4.

µ(Φ,Ψ) = max
i 6=j
| < Φi,Ψj > | (2)

• Lower the µ, better the reconstruction.

3
M. Elad, “Sparse and Redundant Representations: From Theory to Applications,” in Signal and Image

Processing, Springer Publishing Company, Incorporated, 1st ed., 2010.
4

D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Transactions on
Information Theory, vol. 47, no. 7, pp. 2845-2862, 2001.
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Selection of Φ
Random Matrix→ Gaussian or Normal, Bernoulli etc.
Deterministic matrix→ DBBD, Toeplitz-structured matrix,
second-order Reed Muller code based matrix etc.
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Selection of Φ

Random matrices→
• Difficult to implement in hardware.
• Encodes the measurements→ Privacy preservation
for wireless transmission of measurements.

Deterministic matrices→
• Easier to implement in hardware.
•Morphology is preserved in the compressed domain.
• Reconstruction quality improves compared to the
random matrices for a fixed Ψ.
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X min||s||1 subject to y = ΦΨs→ Solvable convex optimization problem leading to same solution with
`0 norm.

Measurement vector, y
M×1 Sparse recovery algorithm,< Sparse vector, s

N×1

Measurement matrix, Φ
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Sparsifying matrix, Ψ
N×N

Figure: Block diagram representation of sparse reconstruction

sN×1 = <(yM×1,ΦM×N ,ΨN×N )

CS-based Recovery

6/47 Mitra Carleton University



xN×1

Segmentation-based Sensing

7/47 Mitra Carleton University



xN×1 (where N = N′ × p)

x
N′×1

x
N′×1

p smaller segments x
N′×1

Segmentation-based Sensing

7/47 Mitra Carleton University



xN×1 (where N = N′ × p)

x
N′×1

x
N′×1

p smaller segments x
N′×1yΦM ′×N ′

Segmentation-based Sensing

7/47 Mitra Carleton University



xN×1 (where N = N′ × p)

x
N′×1

x
N′×1

p smaller segments x
N′×1yΦM ′×N ′

y
M×1

(where M = M′ × p)

y
M′×1

y
M′×1 p smaller segments y

M′×1

Segmentation-based Sensing

7/47 Mitra Carleton University



Advantages:

Discussions

8/47 Mitra Carleton University



Advantages:
1. Generation of smaller Φ

Discussions

8/47 Mitra Carleton University



Advantages:
1. Generation of smaller Φ→ Lesser matrix multiplication
leading to easier hardware implementation.

Discussions

8/47 Mitra Carleton University



Advantages:
1. Generation of smaller Φ→ Lesser matrix multiplication
leading to easier hardware implementation.
2. Smaller segments of signals transmitted wirelessly to
remote systems for ‘processing on demand’.

Discussions

8/47 Mitra Carleton University



Advantages:
1. Generation of smaller Φ→ Lesser matrix multiplication
leading to easier hardware implementation.
2. Smaller segments of signals transmitted wirelessly to
remote systems for ‘processing on demand’.

Applications:

Discussions

8/47 Mitra Carleton University



Advantages:
1. Generation of smaller Φ→ Lesser matrix multiplication
leading to easier hardware implementation.
2. Smaller segments of signals transmitted wirelessly to
remote systems for ‘processing on demand’.

Applications:
1. Continuous bio-signal (e.g. ECG) monitoring using
‘resource constraint’ wearable devices.

Discussions

8/47 Mitra Carleton University



Advantages:
1. Generation of smaller Φ→ Lesser matrix multiplication
leading to easier hardware implementation.
2. Smaller segments of signals transmitted wirelessly to
remote systems for ‘processing on demand’.

Applications:
1. Continuous bio-signal (e.g. ECG) monitoring using
‘resource constraint’ wearable devices.
2. Smaller Φ enables segmented column/row-based
sensing of larger images.

Discussions
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2. Degradation in reconstruction quality caused by segmentation.
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Concatenate p individual segments of y→ Form yM×1→
Perform recovery once.

Issue
ΦM ′×N ′ constructed during measurement→ ΦM×N can’t be
reconstructed!

Solution?
ΦM ′×N ′ can be expanded to form ΦM×N .

Way out?
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sN×1 = <(yM×1, Φ̂M×N ,Ψ
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Remains unchanged
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Theorem
Let us consider the resultant Kronecker-based sparsifying matrix
Ψ̂N×N = Ip×p ⊗ΨN′×N′ is of size N ×N . If the modified sparsifying basis
Ψ′N×N is regenerated from the same basis then,

µ(Φ̂M×N , Ψ̂N×N ) > µ(Φ̂M×N ,Ψ
′
N×N )
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“MIT-BIH Arrhythmia Database.” Available: https://www.physionet.org/physiobank/database/mitdb/

Kronecker CS-based 1-D Signal Recovery
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• To ensure easy realisation deterministic sensing is adopted.
• Linear filtering-based DBBD 6 deterministic matrix is used in
this work.

Linear Filtering Block,

[1, 1, . . . , 1]
Decimation by

⌊
N
M

⌋ y

• A matrix representation of DBBD deterministic matrix for
M = 4 and N = 16.

Φ4×16 =

 [1111]
[1111]

[1111]
[1111]



6
A. Ravelomanantsoa, H. Rabah and A. Rouane, “Compressed sensing: A simple deterministic measurement

matrix and a fast recovery algorithm," IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 3405–3413,
Dec 2015
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X DBBD deterministic sensing matrix needs no
multiplication.
X DBBD matrix preserves morphology in the compressed
domain.
X Enables signal processing in the compressed domain.

Advantages
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Statistical Parameter SNR (dB)
Biorthogonal Coiflets Daubechies DCT Haar Discrete Meyer Reverse Biorthogonal Symlets

Minimum 5.31 21.69 17.45 35.17 20.79 31.19 12.46 17.45
Maximum 26.61 23.65 26.76 35.17 20.79 31.19 27.00 36.62

Median 21.96 22.90 23.20 35.17 20.79 31.19 23.08 21.74

Table: Statistical analysis of recovery performance using modified Kronecker-based
technique: CR = 50%, Φ = DBBD

Φ Ψ
Standard Modified

SNR RMS QS MAX SNR RMS QS MAX
DBBD DCT 34.38 1.02 1.4 5.85 35.17 1.12 1.48 4.03
Bernoulli Random
Matrix

DCT 17.56 7.04 0.18 55.67 20.07 9.87 0.24 30.63

Gaussian Random
Matrix

DCT 17.04 7.68 0.16 57.26 19.37 10.62 0.23 36.82

Table: Performance analysis for various measurement matrices at CR = 50%

Kronecker CS-based 1-D Signal Recovery
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Figure: Comparison between different decomposition levels of different wavelets at CR
= 50% with Φ =DBBD: (a) Using modified Kronecker-based technique, (b) Using
standard Kronecker-based technique.
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Figure: Visual representation of ECG signals in presence of -15 dB correlated noise using Φ = random Bernoulli
matrix & Ψ = Coif5 at CR = 75%.
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Figure: Visual representation of ECG signals in presence of -15 dB correlated noise using Φ = DBBD & Ψ =
Coif5 at CR = 75%.

Kronecker CS-based 1-D Signal Recovery

24/47 Mitra Carleton University



X Improvement observed for various levels of
compression (50%, 75%, 87.5%).

Discussions

25/47 Mitra Carleton University



X Improvement observed for various levels of
compression (50%, 75%, 87.5%).
X Improvement is observed for both random and
deterministic measurements.

Discussions

25/47 Mitra Carleton University



X Improvement observed for various levels of
compression (50%, 75%, 87.5%).
X Improvement is observed for both random and
deterministic measurements.
X Better signal quality is attained by using deterministic
measurement matrix.

Discussions

25/47 Mitra Carleton University



X Improvement observed for various levels of
compression (50%, 75%, 87.5%).
X Improvement is observed for both random and
deterministic measurements.
X Better signal quality is attained by using deterministic
measurement matrix.
X Wavelet decomposition level does not have impact on
signal quality.

Discussions

25/47 Mitra Carleton University



X Improvement observed for various levels of
compression (50%, 75%, 87.5%).
X Improvement is observed for both random and
deterministic measurements.
X Better signal quality is attained by using deterministic
measurement matrix.
X Wavelet decomposition level does not have impact on
signal quality.
X DCT serves as better Ψ for DBBD measurement matrix.

Discussions

25/47 Mitra Carleton University



X Improvement observed for various levels of
compression (50%, 75%, 87.5%).
X Improvement is observed for both random and
deterministic measurements.
X Better signal quality is attained by using deterministic
measurement matrix.
X Wavelet decomposition level does not have impact on
signal quality.
X DCT serves as better Ψ for DBBD measurement matrix.
X Filtering effect of DBBD makes it suitable for measuring
noisy signals.

Discussions
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Figure: Original Image 7

7Image freely available in Image Processing Toolbox TM of MathWorks R©
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(a) Reconstructed image using standard Kronecker-based
technique

(b) Reconstructed image using modified Kronecker-based
technique

Modified Kronecker-based Recovery for 2-D Signals
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X Better signal quality is attained by using deterministic
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Φ
M×N

X
N×N

ΦT
N×M

Takeaways

X Aspect ratio of the compressed image is preserved.
X Images stored in the compressed domain requires lesser
storage space (M ×M matrix), compared to the
column-wise technique.
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Figure: Block diagram representation of modified 2-D CS recovery.
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Infra-red Image (With Noise7)
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7
White Gaussian noise of 0 mean and variance of 0.03 has been added.
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X Development of a novel 2-D aspect ratio preserving CS technique
and application of modified Kronecker-based recovery technique for
2-D signals.

X Demonstration of structure and morphology preservation through
2-D deterministic aspect ratio preserving CS→ Signal processing in the
compressed domain without the need for any recovery.

X Investigation of Kronecker-based CS recovery technique for ECG
signals using various sparsifying dictionaries, measurement matrices
and noise levels for various compression levels.

Contributions

41/47 Mitra Carleton University



Journal Publications
1. D. Mitra, H. Zanddizari and S. Rajan, “Investigation of
Kronecker-based Recovery of Compressed ECG Measurements," under
revision after first submission to IEEE Transactions on Instrumentation
and Measurement, 2019.
2. H. Sadreazami, D. Mitra, S. Rajan and M. Bolic, “Fall Detection in
Compressed Domain using Machine Learning,” 2019. (Under
Preparation).

Conference Publications
1. D. Mitra, S. Rajan and B. Balaji, “Deterministic compressive sensing
approachfor compressed domain image analysis," in 2019 IEEE Sensors
Applications Symposium (SAS), France, March 2019.
2. D. Mitra, H. Zanddizari and S. Rajan, “Improvement of recovery in
segmentation-based parallel compressive sensing,” in 2018 IEEE
International Symposium on Signal Processing and Information Technology
(ISSPIT), pp. 501-506, Lousville, USA, Dec 2018.
3. D. Mitra, H. Zanddizari and S. Rajan, “Improvement of signal
quality during recovery of compressively sensed ECG signals," in 2018
IEEE International Symposium on Medical Measurements and Applications
(MeMeA), pp. 1-5, Rome, Italy, June 2018.

Publications



X Hardware-based implementation of Kronecker-based
recovery and 1-D signal acquisition.

Scope of Future Works

43/47 Mitra Carleton University



X Hardware-based implementation of Kronecker-based
recovery and 1-D signal acquisition.
X Development of theoretical bound for improvement
using modified Kronecker-based technique.

Scope of Future Works

43/47 Mitra Carleton University



X Hardware-based implementation of Kronecker-based
recovery and 1-D signal acquisition.
X Development of theoretical bound for improvement
using modified Kronecker-based technique.
X Performance comparison between row & column wise
sensing and column-wise sensing for 2-D signals.

Scope of Future Works

43/47 Mitra Carleton University



X Hardware-based implementation of Kronecker-based
recovery and 1-D signal acquisition.
X Development of theoretical bound for improvement
using modified Kronecker-based technique.
X Performance comparison between row & column wise
sensing and column-wise sensing for 2-D signals.
X Implementation of modified Kronecker-based recovery
technique in block-based 2D-CS.

Scope of Future Works

43/47 Mitra Carleton University



X Hardware-based implementation of Kronecker-based
recovery and 1-D signal acquisition.
X Development of theoretical bound for improvement
using modified Kronecker-based technique.
X Performance comparison between row & column wise
sensing and column-wise sensing for 2-D signals.
X Implementation of modified Kronecker-based recovery
technique in block-based 2D-CS.
X Possibility of Kronecker-based measurement for an
extension to multi-dimensional signal processing (such as
3-D MRI).
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